Spaces:
Runtime error
Runtime error
Create utils.py
Browse files- models/utils.py +278 -0
models/utils.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
|
6 |
+
from torch import nn
|
7 |
+
from typing import List
|
8 |
+
from transformers import BertTokenizer
|
9 |
+
from urllib.parse import urlparse
|
10 |
+
from timm.models.hub import download_cached_file
|
11 |
+
from models.vit import interpolate_pos_embed
|
12 |
+
from models.swin_transformer import interpolate_relative_pos_embed
|
13 |
+
from pathlib import Path
|
14 |
+
CONFIG_PATH=(Path(__file__).resolve().parents[1])
|
15 |
+
|
16 |
+
def read_json(rpath):
|
17 |
+
with open(rpath, 'r') as f:
|
18 |
+
return json.load(f)
|
19 |
+
|
20 |
+
|
21 |
+
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,
|
22 |
+
base_model_prefix: str, skip_key: str):
|
23 |
+
uninitialized_encoder_weights: List[str] = []
|
24 |
+
if decoder.__class__ != encoder.__class__:
|
25 |
+
logger.info(
|
26 |
+
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
27 |
+
)
|
28 |
+
|
29 |
+
def tie_encoder_to_decoder_recursively(
|
30 |
+
decoder_pointer: nn.Module,
|
31 |
+
encoder_pointer: nn.Module,
|
32 |
+
module_name: str,
|
33 |
+
uninitialized_encoder_weights: List[str],
|
34 |
+
skip_key: str,
|
35 |
+
depth=0,
|
36 |
+
):
|
37 |
+
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
38 |
+
encoder_pointer, nn.Module
|
39 |
+
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
40 |
+
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
41 |
+
assert hasattr(encoder_pointer, "weight")
|
42 |
+
encoder_pointer.weight = decoder_pointer.weight
|
43 |
+
if hasattr(decoder_pointer, "bias"):
|
44 |
+
assert hasattr(encoder_pointer, "bias")
|
45 |
+
encoder_pointer.bias = decoder_pointer.bias
|
46 |
+
print(module_name + ' is tied')
|
47 |
+
return
|
48 |
+
|
49 |
+
encoder_modules = encoder_pointer._modules
|
50 |
+
decoder_modules = decoder_pointer._modules
|
51 |
+
if len(decoder_modules) > 0:
|
52 |
+
assert (
|
53 |
+
len(encoder_modules) > 0
|
54 |
+
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
55 |
+
|
56 |
+
all_encoder_weights = set([
|
57 |
+
module_name + "/" + sub_name
|
58 |
+
for sub_name in encoder_modules.keys()
|
59 |
+
])
|
60 |
+
encoder_layer_pos = 0
|
61 |
+
for name, module in decoder_modules.items():
|
62 |
+
if name.isdigit():
|
63 |
+
encoder_name = str(int(name) + encoder_layer_pos)
|
64 |
+
decoder_name = name
|
65 |
+
if not isinstance(
|
66 |
+
decoder_modules[decoder_name],
|
67 |
+
type(encoder_modules[encoder_name])) and len(
|
68 |
+
encoder_modules) != len(decoder_modules):
|
69 |
+
# this can happen if the name corresponds to the position in a list module list of layers
|
70 |
+
# in this case the decoder has added a cross-attention that the encoder does not have
|
71 |
+
# thus skip this step and subtract one layer pos from encoder
|
72 |
+
encoder_layer_pos -= 1
|
73 |
+
continue
|
74 |
+
elif name not in encoder_modules:
|
75 |
+
continue
|
76 |
+
elif depth > 500:
|
77 |
+
raise ValueError(
|
78 |
+
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
decoder_name = encoder_name = name
|
82 |
+
tie_encoder_to_decoder_recursively(
|
83 |
+
decoder_modules[decoder_name],
|
84 |
+
encoder_modules[encoder_name],
|
85 |
+
module_name + "/" + name,
|
86 |
+
uninitialized_encoder_weights,
|
87 |
+
skip_key,
|
88 |
+
depth=depth + 1,
|
89 |
+
)
|
90 |
+
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
91 |
+
|
92 |
+
uninitialized_encoder_weights += list(all_encoder_weights)
|
93 |
+
|
94 |
+
# tie weights recursively
|
95 |
+
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,
|
96 |
+
uninitialized_encoder_weights, skip_key)
|
97 |
+
|
98 |
+
|
99 |
+
class GroupWiseLinear(nn.Module):
|
100 |
+
# could be changed to:
|
101 |
+
# output = torch.einsum('ijk,zjk->ij', x, self.W)
|
102 |
+
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
|
103 |
+
def __init__(self, num_class, hidden_dim, bias=True):
|
104 |
+
super().__init__()
|
105 |
+
self.num_class = num_class
|
106 |
+
self.hidden_dim = hidden_dim
|
107 |
+
self.bias = bias
|
108 |
+
|
109 |
+
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
|
110 |
+
if bias:
|
111 |
+
self.b = nn.Parameter(torch.Tensor(1, num_class))
|
112 |
+
self.reset_parameters()
|
113 |
+
|
114 |
+
def reset_parameters(self):
|
115 |
+
stdv = 1. / math.sqrt(self.W.size(2))
|
116 |
+
for i in range(self.num_class):
|
117 |
+
self.W[0][i].data.uniform_(-stdv, stdv)
|
118 |
+
if self.bias:
|
119 |
+
for i in range(self.num_class):
|
120 |
+
self.b[0][i].data.uniform_(-stdv, stdv)
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
# x: B,K,d
|
124 |
+
x = (self.W * x).sum(-1)
|
125 |
+
if self.bias:
|
126 |
+
x = x + self.b
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
def init_tokenizer():
|
131 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
132 |
+
tokenizer.add_special_tokens({'bos_token': '[DEC]'})
|
133 |
+
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
|
134 |
+
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
135 |
+
return tokenizer
|
136 |
+
|
137 |
+
|
138 |
+
def create_vit(vit,
|
139 |
+
image_size,
|
140 |
+
use_grad_checkpointing=False,
|
141 |
+
ckpt_layer=0,
|
142 |
+
drop_path_rate=0):
|
143 |
+
|
144 |
+
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
145 |
+
if vit == 'base':
|
146 |
+
vision_width = 768
|
147 |
+
visual_encoder = VisionTransformer(
|
148 |
+
img_size=image_size,
|
149 |
+
patch_size=16,
|
150 |
+
embed_dim=vision_width,
|
151 |
+
depth=12,
|
152 |
+
num_heads=12,
|
153 |
+
use_grad_checkpointing=use_grad_checkpointing,
|
154 |
+
ckpt_layer=ckpt_layer,
|
155 |
+
drop_path_rate=0 or drop_path_rate)
|
156 |
+
elif vit == 'large':
|
157 |
+
vision_width = 1024
|
158 |
+
visual_encoder = VisionTransformer(
|
159 |
+
img_size=image_size,
|
160 |
+
patch_size=16,
|
161 |
+
embed_dim=vision_width,
|
162 |
+
depth=24,
|
163 |
+
num_heads=16,
|
164 |
+
use_grad_checkpointing=use_grad_checkpointing,
|
165 |
+
ckpt_layer=ckpt_layer,
|
166 |
+
drop_path_rate=0.1 or drop_path_rate)
|
167 |
+
return visual_encoder, vision_width
|
168 |
+
|
169 |
+
|
170 |
+
def is_url(url_or_filename):
|
171 |
+
parsed = urlparse(url_or_filename)
|
172 |
+
return parsed.scheme in ("http", "https")
|
173 |
+
|
174 |
+
|
175 |
+
def load_checkpoint(model, url_or_filename):
|
176 |
+
if is_url(url_or_filename):
|
177 |
+
cached_file = download_cached_file(url_or_filename,
|
178 |
+
check_hash=False,
|
179 |
+
progress=True)
|
180 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
181 |
+
elif os.path.isfile(url_or_filename):
|
182 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
183 |
+
else:
|
184 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
185 |
+
|
186 |
+
state_dict = checkpoint['model']
|
187 |
+
|
188 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(
|
189 |
+
state_dict['visual_encoder.pos_embed'], model.visual_encoder)
|
190 |
+
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
191 |
+
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(
|
192 |
+
state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m)
|
193 |
+
for key in model.state_dict().keys():
|
194 |
+
if key in state_dict.keys():
|
195 |
+
if state_dict[key].shape != model.state_dict()[key].shape:
|
196 |
+
del state_dict[key]
|
197 |
+
|
198 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
199 |
+
print('load checkpoint from %s' % url_or_filename)
|
200 |
+
return model, msg
|
201 |
+
|
202 |
+
|
203 |
+
def load_checkpoint_swinbase(model, url_or_filename, kwargs):
|
204 |
+
if kwargs['image_size'] == 224:
|
205 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
|
206 |
+
elif kwargs['image_size'] == 384:
|
207 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
|
208 |
+
window_size = read_json(vision_config_path)['window_size']
|
209 |
+
print('--------------')
|
210 |
+
print(url_or_filename)
|
211 |
+
print('--------------')
|
212 |
+
if is_url(url_or_filename):
|
213 |
+
cached_file = download_cached_file(url_or_filename,
|
214 |
+
check_hash=False,
|
215 |
+
progress=True)
|
216 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
217 |
+
elif os.path.isfile(url_or_filename):
|
218 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
219 |
+
else:
|
220 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
221 |
+
|
222 |
+
state_dict = checkpoint['model']
|
223 |
+
|
224 |
+
for k in list(state_dict.keys()):
|
225 |
+
if 'relative_position_bias_table' in k:
|
226 |
+
dst_num_pos = (2 * window_size - 1)**2
|
227 |
+
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
|
228 |
+
dst_num_pos,
|
229 |
+
param_name=k)
|
230 |
+
elif ('relative_position_index' in k) or ('attn_mask' in k):
|
231 |
+
del state_dict[k]
|
232 |
+
elif "vision_multi" in k:
|
233 |
+
state_dict[k.replace("vision_multi",
|
234 |
+
"tagging_head")] = state_dict.pop(k)
|
235 |
+
|
236 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
237 |
+
print('load checkpoint from %s' % url_or_filename)
|
238 |
+
return model, msg
|
239 |
+
|
240 |
+
|
241 |
+
def load_checkpoint_swinlarge(model, url_or_filename, kwargs):
|
242 |
+
if kwargs['image_size'] == 224:
|
243 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
|
244 |
+
elif kwargs['image_size'] == 384:
|
245 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
|
246 |
+
window_size = read_json(vision_config_path)['window_size']
|
247 |
+
print('--------------')
|
248 |
+
print(url_or_filename)
|
249 |
+
print('--------------')
|
250 |
+
if is_url(url_or_filename):
|
251 |
+
cached_file = download_cached_file(url_or_filename,
|
252 |
+
check_hash=False,
|
253 |
+
progress=True)
|
254 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
255 |
+
elif os.path.isfile(url_or_filename):
|
256 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
257 |
+
else:
|
258 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
259 |
+
|
260 |
+
state_dict = checkpoint['model']
|
261 |
+
|
262 |
+
for k in list(state_dict.keys()):
|
263 |
+
if 'relative_position_bias_table' in k:
|
264 |
+
dst_num_pos = (2 * window_size - 1)**2
|
265 |
+
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
|
266 |
+
dst_num_pos,
|
267 |
+
param_name=k)
|
268 |
+
elif ('relative_position_index' in k) or ('attn_mask' in k):
|
269 |
+
del state_dict[k]
|
270 |
+
elif "vision_multi" in k:
|
271 |
+
state_dict[k.replace("vision_multi",
|
272 |
+
"tagging_head")] = state_dict.pop(k)
|
273 |
+
|
274 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
275 |
+
print('load checkpoint from %s' % url_or_filename)
|
276 |
+
return model, msg
|
277 |
+
|
278 |
+
|