Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from pathlib import Path | |
# setup Grouded-Segment-Anything | |
# building GroundingDINO requires torch but imports it before installing, | |
# so directly installing in requirements.txt causes dependency error. | |
# 1. build with "-e" option to keep the bin file in ./GroundingDINO/groundingdino/, rather than in site-package dir. | |
os.system("pip install -e ./GroundingDINO/") | |
# 2. for unknown reason, "import groundingdino" will fill due to unable to find the module, even after installing. | |
# add ./GroundingDINO/ to PATH, so package "groundingdino" can be imported. | |
sys.path.append(str(Path(__file__).parent / "GroundingDINO")) | |
import random # noqa: E402 | |
import cv2 # noqa: E402 | |
import groundingdino.datasets.transforms as T # noqa: E402 | |
import numpy as np # noqa: E402 | |
import torch # noqa: E402 | |
import torchvision # noqa: E402 | |
import torchvision.transforms as TS # noqa: E402 | |
from groundingdino.models import build_model # noqa: E402 | |
from groundingdino.util.slconfig import SLConfig # noqa: E402 | |
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # noqa: E402 | |
from PIL import Image, ImageDraw, ImageFont # noqa: E402 | |
from ram import inference_ram # noqa: E402 | |
from ram import inference_tag2text # noqa: E402 | |
from ram.models import ram # noqa: E402 | |
from ram.models import tag2text_caption # noqa: E402 | |
from segment_anything import SamPredictor, build_sam # noqa: E402 | |
# args | |
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" | |
ram_checkpoint = "./ram_swin_large_14m.pth" | |
tag2text_checkpoint = "./tag2text_swin_14m.pth" | |
grounded_checkpoint = "./groundingdino_swint_ogc.pth" | |
sam_checkpoint = "./sam_vit_h_4b8939.pth" | |
box_threshold = 0.25 | |
text_threshold = 0.2 | |
iou_threshold = 0.5 | |
device = "cpu" | |
def load_model(model_config_path, model_checkpoint_path, device): | |
args = SLConfig.fromfile(model_config_path) | |
args.device = device | |
model = build_model(args) | |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") | |
load_res = model.load_state_dict( | |
clean_state_dict(checkpoint["model"]), strict=False) | |
print(load_res) | |
_ = model.eval() | |
return model | |
def get_grounding_output(model, image, caption, box_threshold, text_threshold, device="cpu"): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
model = model.to(device) | |
image = image.to(device) | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
scores = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap( | |
logit > text_threshold, tokenized, tokenlizer) | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
def draw_mask(mask, draw, random_color=False): | |
if random_color: | |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153) | |
else: | |
color = (30, 144, 255, 153) | |
nonzero_coords = np.transpose(np.nonzero(mask)) | |
for coord in nonzero_coords: | |
draw.point(coord[::-1], fill=color) | |
def draw_box(box, draw, label): | |
# random color | |
color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
line_width = int(max(4, min(20, 0.006*max(draw.im.size)))) | |
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=line_width) | |
if label: | |
font_path = os.path.join( | |
cv2.__path__[0], 'qt', 'fonts', 'DejaVuSans.ttf') | |
font_size = int(max(12, min(60, 0.02*max(draw.im.size)))) | |
font = ImageFont.truetype(font_path, size=font_size) | |
if hasattr(font, "getbbox"): | |
bbox = draw.textbbox((box[0], box[1]), str(label), font) | |
else: | |
w, h = draw.textsize(str(label), font) | |
bbox = (box[0], box[1], w + box[0], box[1] + h) | |
draw.rectangle(bbox, fill=color) | |
draw.text((box[0], box[1]), str(label), fill="white", font=font) | |
draw.text((box[0], box[1]), label, font=font) | |
def inference( | |
raw_image, specified_tags, do_det_seg, | |
tagging_model_type, tagging_model, grounding_dino_model, sam_model | |
): | |
print(f"Start processing, image size {raw_image.size}") | |
raw_image = raw_image.convert("RGB") | |
# run tagging model | |
normalize = TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
transform = TS.Compose([ | |
TS.Resize((384, 384)), | |
TS.ToTensor(), | |
normalize | |
]) | |
image = raw_image.resize((384, 384)) | |
image = transform(image).unsqueeze(0).to(device) | |
# Currently ", " is better for detecting single tags | |
# while ". " is a little worse in some case | |
if tagging_model_type == "RAM": | |
res = inference_ram(image, tagging_model) | |
tags = res[0].strip(' ').replace(' ', ' ').replace(' |', ',') | |
tags_chinese = res[1].strip(' ').replace(' ', ' ').replace(' |', ',') | |
print("Tags: ", tags) | |
print("图像标签: ", tags_chinese) | |
else: | |
res = inference_tag2text(image, tagging_model, specified_tags) | |
tags = res[0].strip(' ').replace(' ', ' ').replace(' |', ',') | |
caption = res[2] | |
print(f"Tags: {tags}") | |
print(f"Caption: {caption}") | |
# return | |
if not do_det_seg: | |
if tagging_model_type == "RAM": | |
return tags.replace(", ", " | "), tags_chinese.replace(", ", " | "), None | |
else: | |
return tags.replace(", ", " | "), caption, None | |
# run groundingDINO | |
transform = T.Compose([ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
image, _ = transform(raw_image, None) # 3, h, w | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
grounding_dino_model, image, tags, box_threshold, text_threshold, device=device | |
) | |
print("GroundingDINO finished") | |
# run SAM | |
image = np.asarray(raw_image) | |
sam_model.set_image(image) | |
size = raw_image.size | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
# use NMS to handle overlapped boxes | |
print(f"Before NMS: {boxes_filt.shape[0]} boxes") | |
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
print(f"After NMS: {boxes_filt.shape[0]} boxes") | |
transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) | |
masks, _, _ = sam_model.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes.to(device), | |
multimask_output=False, | |
) | |
print("SAM finished") | |
# draw output image | |
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) | |
mask_draw = ImageDraw.Draw(mask_image) | |
for mask in masks: | |
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True) | |
image_draw = ImageDraw.Draw(raw_image) | |
for box, label in zip(boxes_filt, pred_phrases): | |
draw_box(box, image_draw, label) | |
out_image = raw_image.convert('RGBA') | |
out_image.alpha_composite(mask_image) | |
# return | |
if tagging_model_type == "RAM": | |
return tags.replace(", ", " | "), tags_chinese.replace(", ", " | "), out_image | |
else: | |
return tags.replace(", ", " | "), caption, out_image | |
if __name__ == "__main__": | |
import gradio as gr | |
# load RAM | |
ram_model = ram(pretrained=ram_checkpoint, image_size=384, vit='swin_l') | |
ram_model.eval() | |
ram_model = ram_model.to(device) | |
# load Tag2Text | |
delete_tag_index = [] # filter out attributes and action categories which are difficult to grounding | |
for i in range(3012, 3429): | |
delete_tag_index.append(i) | |
tag2text_model = tag2text_caption(pretrained=tag2text_checkpoint, | |
image_size=384, | |
vit='swin_b', | |
delete_tag_index=delete_tag_index) | |
tag2text_model.threshold = 0.64 # we reduce the threshold to obtain more tags | |
tag2text_model.eval() | |
tag2text_model = tag2text_model.to(device) | |
# load groundingDINO | |
grounding_dino_model = load_model(config_file, grounded_checkpoint, device=device) | |
# load SAM | |
sam_model = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device)) | |
# build GUI | |
def build_gui(): | |
description = """ | |
<center><strong><font size='10'>Recognize Anything Model + Grounded-SAM</font></strong></center> | |
<br> | |
Welcome to the RAM/Tag2Text + Grounded-SAM demo! <br><br> | |
<li> | |
<b>Recognize Anything Model:</b> Upload your image to get the <b>English and Chinese tags</b>! | |
</li> | |
<li> | |
<b>Tag2Text Model:</b> Upload your image to get the <b>tags and caption</b>! | |
(Optional: Specify tags to get the corresponding caption.) | |
</li> | |
<li> | |
<b>Grounded-SAM:</b> Tick the checkbox to get <b>boxes</b> and <b>masks</b> of tags! | |
</li> | |
<br> | |
Great thanks to <a href='https://huggingface.co/majinyu' target='_blank'>Ma Jinyu</a>, the major contributor of this demo! | |
""" # noqa | |
article = """ | |
<p style='text-align: center'> | |
RAM and Tag2Text are trained on open-source datasets, and we are persisting in refining and iterating upon it.<br/> | |
Grounded-SAM is a combination of Grounding DINO and SAM aming to detect and segment anything with text inputs.<br/> | |
<a href='https://recognize-anything.github.io/' target='_blank'>Recognize Anything: A Strong Image Tagging Model</a> | |
| | |
<a href='https://https://tag2text.github.io/' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | |
| | |
<a href='https://github.com/IDEA-Research/Grounded-Segment-Anything' target='_blank'>Grounded-Segment-Anything</a> | |
</p> | |
""" # noqa | |
def inference_with_ram(img, do_det_seg): | |
return inference( | |
img, None, do_det_seg, | |
"RAM", ram_model, grounding_dino_model, sam_model | |
) | |
def inference_with_t2t(img, input_tags, do_det_seg): | |
return inference( | |
img, input_tags, do_det_seg, | |
"Tag2Text", tag2text_model, grounding_dino_model, sam_model | |
) | |
with gr.Blocks(title="Recognize Anything Model") as demo: | |
############### | |
# components | |
############### | |
gr.HTML(description) | |
with gr.Tab(label="Recognize Anything Model"): | |
with gr.Row(): | |
with gr.Column(): | |
ram_in_img = gr.Image(type="pil") | |
ram_opt_det_seg = gr.Checkbox(label="Get Boxes and Masks with Grounded-SAM", value=True) | |
with gr.Row(): | |
ram_btn_run = gr.Button(value="Run") | |
ram_btn_clear = gr.ClearButton() | |
with gr.Column(): | |
ram_out_img = gr.Image(type="pil") | |
ram_out_tag = gr.Textbox(label="Tags") | |
ram_out_biaoqian = gr.Textbox(label="标签") | |
gr.Examples( | |
examples=[ | |
["images/demo1.jpg", True], | |
["images/demo2.jpg", True], | |
["images/demo4.jpg", True], | |
], | |
fn=inference_with_ram, | |
inputs=[ram_in_img, ram_opt_det_seg], | |
outputs=[ram_out_tag, ram_out_biaoqian, ram_out_img], | |
cache_examples=True | |
) | |
with gr.Tab(label="Tag2Text Model"): | |
with gr.Row(): | |
with gr.Column(): | |
t2t_in_img = gr.Image(type="pil") | |
t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)") | |
t2t_opt_det_seg = gr.Checkbox(label="Get Boxes and Masks with Grounded-SAM", value=True) | |
with gr.Row(): | |
t2t_btn_run = gr.Button(value="Run") | |
t2t_btn_clear = gr.ClearButton() | |
with gr.Column(): | |
t2t_out_img = gr.Image(type="pil") | |
t2t_out_tag = gr.Textbox(label="Tags") | |
t2t_out_cap = gr.Textbox(label="Caption") | |
gr.Examples( | |
examples=[ | |
["images/demo4.jpg", "", True], | |
["images/demo4.jpg", "power line", False], | |
["images/demo4.jpg", "track, train", False], | |
], | |
fn=inference_with_t2t, | |
inputs=[t2t_in_img, t2t_in_tag, t2t_opt_det_seg], | |
outputs=[t2t_out_tag, t2t_out_cap, t2t_out_img], | |
cache_examples=True | |
) | |
gr.HTML(article) | |
############### | |
# events | |
############### | |
# run inference | |
ram_btn_run.click( | |
fn=inference_with_ram, | |
inputs=[ram_in_img, ram_opt_det_seg], | |
outputs=[ram_out_tag, ram_out_biaoqian, ram_out_img] | |
) | |
t2t_btn_run.click( | |
fn=inference_with_t2t, | |
inputs=[t2t_in_img, t2t_in_tag, t2t_opt_det_seg], | |
outputs=[t2t_out_tag, t2t_out_cap, t2t_out_img] | |
) | |
# hide or show image output | |
ram_opt_det_seg.change(fn=lambda b: gr.update(visible=b), inputs=[ram_opt_det_seg], outputs=[ram_out_img]) | |
t2t_opt_det_seg.change(fn=lambda b: gr.update(visible=b), inputs=[t2t_opt_det_seg], outputs=[t2t_out_img]) | |
# clear | |
ram_btn_clear.add([ram_in_img, ram_out_img, ram_out_tag, ram_out_biaoqian]) | |
t2t_btn_clear.add([t2t_in_img, t2t_in_tag, t2t_out_img, t2t_out_tag, t2t_out_cap]) | |
return demo | |
build_gui().launch(enable_queue=True) | |