Spaces:
Running
on
A10G
Running
on
A10G
import json | |
import cv2 | |
import numpy as np | |
import os | |
from torch.utils.data import Dataset | |
from PIL import Image | |
import cv2 | |
from .data_utils import * | |
from .base import BaseDataset | |
class YoutubeVOSDataset(BaseDataset): | |
def __init__(self, image_dir, anno, meta): | |
self.image_root = image_dir | |
self.anno_root = anno | |
self.meta_file = meta | |
video_dirs = [] | |
with open(self.meta_file) as f: | |
records = json.load(f) | |
records = records["videos"] | |
for video_id in records: | |
video_dirs.append(video_id) | |
self.records = records | |
self.data = video_dirs | |
self.size = (512,512) | |
self.clip_size = (224,224) | |
self.dynamic = 1 | |
def __len__(self): | |
return 40000 | |
def check_region_size(self, image, yyxx, ratio, mode = 'max'): | |
pass_flag = True | |
H,W = image.shape[0], image.shape[1] | |
H,W = H * ratio, W * ratio | |
y1,y2,x1,x2 = yyxx | |
h,w = y2-y1,x2-x1 | |
if mode == 'max': | |
if h > H and w > W: | |
pass_flag = False | |
elif mode == 'min': | |
if h < H and w < W: | |
pass_flag = False | |
return pass_flag | |
def get_sample(self, idx): | |
video_id = list(self.records.keys())[idx] | |
objects_id = np.random.choice( list(self.records[video_id]["objects"].keys()) ) | |
frames = self.records[video_id]["objects"][objects_id]["frames"] | |
# Sampling frames | |
min_interval = len(frames) // 10 | |
start_frame_index = np.random.randint(low=0, high=len(frames) - min_interval) | |
end_frame_index = start_frame_index + np.random.randint(min_interval, len(frames) - start_frame_index ) | |
end_frame_index = min(end_frame_index, len(frames) - 1) | |
# Get image path | |
ref_image_name = frames[start_frame_index] | |
tar_image_name = frames[end_frame_index] | |
ref_image_path = os.path.join(self.image_root, video_id, ref_image_name) + '.jpg' | |
tar_image_path = os.path.join(self.image_root, video_id, tar_image_name) + '.jpg' | |
ref_mask_path = ref_image_path.replace('JPEGImages','Annotations').replace('.jpg', '.png') | |
tar_mask_path = tar_image_path.replace('JPEGImages','Annotations').replace('.jpg', '.png') | |
# Read Image and Mask | |
ref_image = cv2.imread(ref_image_path) | |
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB) | |
tar_image = cv2.imread(tar_image_path) | |
tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) | |
ref_mask = Image.open(ref_mask_path ).convert('P') | |
ref_mask= np.array(ref_mask) | |
ref_mask = ref_mask == int(objects_id) | |
tar_mask = Image.open(tar_mask_path ).convert('P') | |
tar_mask= np.array(tar_mask) | |
tar_mask = tar_mask == int(objects_id) | |
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) | |
sampled_time_steps = self.sample_timestep() | |
item_with_collage['time_steps'] = sampled_time_steps | |
return item_with_collage | |