# -------------------------------------------------------- # TinyViT Model Architecture # Copyright (c) 2022 Microsoft # Adapted from LeViT and Swin Transformer # LeViT: (https://github.com/facebookresearch/levit) # Swin: (https://github.com/microsoft/swin-transformer) # Build the TinyViT Model # -------------------------------------------------------- import itertools import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath as TimmDropPath,\ to_2tuple, trunc_normal_ from timm.models.registry import register_model from typing import Tuple class Conv2d_BN(torch.nn.Sequential): def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): super().__init__() self.add_module('c', torch.nn.Conv2d( a, b, ks, stride, pad, dilation, groups, bias=False)) bn = torch.nn.BatchNorm2d(b) torch.nn.init.constant_(bn.weight, bn_weight_init) torch.nn.init.constant_(bn.bias, 0) self.add_module('bn', bn) @torch.no_grad() def fuse(self): c, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps)**0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / \ (bn.running_var + bn.eps)**0.5 m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size( 0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class DropPath(TimmDropPath): def __init__(self, drop_prob=None): super().__init__(drop_prob=drop_prob) self.drop_prob = drop_prob def __repr__(self): msg = super().__repr__() msg += f'(drop_prob={self.drop_prob})' return msg class PatchEmbed(nn.Module): def __init__(self, in_chans, embed_dim, resolution, activation): super().__init__() img_size: Tuple[int, int] = to_2tuple(resolution) self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) self.num_patches = self.patches_resolution[0] * \ self.patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim n = embed_dim self.seq = nn.Sequential( Conv2d_BN(in_chans, n // 2, 3, 2, 1), activation(), Conv2d_BN(n // 2, n, 3, 2, 1), ) def forward(self, x): return self.seq(x) class MBConv(nn.Module): def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): super().__init__() self.in_chans = in_chans self.hidden_chans = int(in_chans * expand_ratio) self.out_chans = out_chans self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) self.act1 = activation() self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans) self.act2 = activation() self.conv3 = Conv2d_BN( self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) self.act3 = activation() self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) x = self.conv3(x) x = self.drop_path(x) x += shortcut x = self.act3(x) return x class PatchMerging(nn.Module): def __init__(self, input_resolution, dim, out_dim, activation): super().__init__() self.input_resolution = input_resolution self.dim = dim self.out_dim = out_dim self.act = activation() self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) stride_c=2 if(out_dim==320 or out_dim==448 or out_dim==576): stride_c=1 self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) def forward(self, x): if x.ndim == 3: H, W = self.input_resolution B = len(x) # (B, C, H, W) x = x.view(B, H, W, -1).permute(0, 3, 1, 2) x = self.conv1(x) x = self.act(x) x = self.conv2(x) x = self.act(x) x = self.conv3(x) x = x.flatten(2).transpose(1, 2) return x class ConvLayer(nn.Module): def __init__(self, dim, input_resolution, depth, activation, drop_path=0., downsample=None, use_checkpoint=False, out_dim=None, conv_expand_ratio=4., ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ MBConv(dim, dim, conv_expand_ratio, activation, drop_path[i] if isinstance(drop_path, list) else drop_path, ) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, out_dim=out_dim, activation=activation) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.norm = nn.LayerNorm(in_features) self.fc1 = nn.Linear(in_features, hidden_features) self.fc2 = nn.Linear(hidden_features, out_features) self.act = act_layer() self.drop = nn.Dropout(drop) def forward(self, x): x = self.norm(x) x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(torch.nn.Module): def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=(14, 14), ): super().__init__() # (h, w) assert isinstance(resolution, tuple) and len(resolution) == 2 self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.nh_kd = nh_kd = key_dim * num_heads self.d = int(attn_ratio * key_dim) self.dh = int(attn_ratio * key_dim) * num_heads self.attn_ratio = attn_ratio h = self.dh + nh_kd * 2 self.norm = nn.LayerNorm(dim) self.qkv = nn.Linear(dim, h) self.proj = nn.Linear(self.dh, dim) points = list(itertools.product( range(resolution[0]), range(resolution[1]))) N = len(points) attention_offsets = {} idxs = [] for p1 in points: for p2 in points: offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter( torch.zeros(num_heads, len(attention_offsets))) self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and hasattr(self, 'ab'): del self.ab else: self.register_buffer('ab', self.attention_biases[:, self.attention_bias_idxs], persistent=False) def forward(self, x): # x (B,N,C) B, N, _ = x.shape # Normalization x = self.norm(x) qkv = self.qkv(x) # (B, N, num_heads, d) q, k, v = qkv.view(B, N, self.num_heads, - 1).split([self.key_dim, self.key_dim, self.d], dim=3) # (B, num_heads, N, d) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) attn = ( (q @ k.transpose(-2, -1)) * self.scale + (self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab) ) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) x = self.proj(x) return x class TinyViTBlock(nn.Module): r""" TinyViT Block. Args: dim (int): Number of input channels. input_resolution (tuple[int, int]): Input resolution. num_heads (int): Number of attention heads. window_size (int): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 local_conv_size (int): the kernel size of the convolution between Attention and MLP. Default: 3 activation: the activation function. Default: nn.GELU """ def __init__(self, dim, input_resolution, num_heads, window_size=7, mlp_ratio=4., drop=0., drop_path=0., local_conv_size=3, activation=nn.GELU, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads assert window_size > 0, 'window_size must be greater than 0' self.window_size = window_size self.mlp_ratio = mlp_ratio self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() assert dim % num_heads == 0, 'dim must be divisible by num_heads' head_dim = dim // num_heads window_resolution = (window_size, window_size) self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) mlp_hidden_dim = int(dim * mlp_ratio) mlp_activation = activation self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop) pad = local_conv_size // 2 self.local_conv = Conv2d_BN( dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" res_x = x if H == self.window_size and W == self.window_size: x = self.attn(x) else: x = x.view(B, H, W, C) pad_b = (self.window_size - H % self.window_size) % self.window_size pad_r = (self.window_size - W % self.window_size) % self.window_size padding = pad_b > 0 or pad_r > 0 if padding: x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) pH, pW = H + pad_b, W + pad_r nH = pH // self.window_size nW = pW // self.window_size # window partition x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( B * nH * nW, self.window_size * self.window_size, C) x = self.attn(x) # window reverse x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C) if padding: x = x[:, :H, :W].contiguous() x = x.view(B, L, C) x = res_x + self.drop_path(x) x = x.transpose(1, 2).reshape(B, C, H, W) x = self.local_conv(x) x = x.view(B, C, L).transpose(1, 2) x = x + self.drop_path(self.mlp(x)) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" class BasicLayer(nn.Module): """ A basic TinyViT layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 activation: the activation function. Default: nn.GELU out_dim: the output dimension of the layer. Default: dim """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., drop=0., drop_path=0., downsample=None, use_checkpoint=False, local_conv_size=3, activation=nn.GELU, out_dim=None, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ TinyViTBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance( drop_path, list) else drop_path, local_conv_size=local_conv_size, activation=activation, ) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, out_dim=out_dim, activation=activation) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class TinyViT(nn.Module): def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_sizes=[7, 7, 14, 7], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, layer_lr_decay=1.0, ): super().__init__() self.img_size=img_size self.num_classes = num_classes self.depths = depths self.num_layers = len(depths) self.mlp_ratio = mlp_ratio activation = nn.GELU self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation) patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): kwargs = dict(dim=embed_dims[i_layer], input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)), patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))), # input_resolution=(patches_resolution[0] // (2 ** i_layer), # patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], downsample=PatchMerging if ( i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, out_dim=embed_dims[min( i_layer + 1, len(embed_dims) - 1)], activation=activation, ) if i_layer == 0: layer = ConvLayer( conv_expand_ratio=mbconv_expand_ratio, **kwargs, ) else: layer = BasicLayer( num_heads=num_heads[i_layer], window_size=window_sizes[i_layer], mlp_ratio=self.mlp_ratio, drop=drop_rate, local_conv_size=local_conv_size, **kwargs) self.layers.append(layer) # Classifier head # self.norm_head = nn.LayerNorm(embed_dims[-1]) # self.head = nn.Linear( # embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() # init weights self.apply(self._init_weights) self.set_layer_lr_decay(layer_lr_decay) self.neck = nn.Sequential( nn.Conv2d( embed_dims[-1], 256, kernel_size=1, bias=False, ), LayerNorm2d(256), nn.Conv2d( 256, 256, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(256), ) def set_layer_lr_decay(self, layer_lr_decay): decay_rate = layer_lr_decay # layers -> blocks (depth) depth = sum(self.depths) lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] #print("LR SCALES:", lr_scales) def _set_lr_scale(m, scale): for p in m.parameters(): p.lr_scale = scale self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) i = 0 for layer in self.layers: for block in layer.blocks: block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) i += 1 if layer.downsample is not None: layer.downsample.apply( lambda x: _set_lr_scale(x, lr_scales[i - 1])) assert i == depth # for m in [self.norm_head]: # m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) for k, p in self.named_parameters(): p.param_name = k def _check_lr_scale(m): for p in m.parameters(): assert hasattr(p, 'lr_scale'), p.param_name self.apply(_check_lr_scale) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay_keywords(self): return {'attention_biases'} def forward_features(self, x): # x = torch.stack([self.preprocess(i) for i in x], dim=0) # x: (N, C, H, W) x = self.patch_embed(x) x = self.layers[0](x) start_i = 1 interm_embeddings=[] for i in range(start_i, len(self.layers)): layer = self.layers[i] x = layer(x) interm_embeddings.append(x.view(x.shape[0], 64, 64, -1).permute(0,3,1,2)) B,_,C = x.size() x = x.view(B, 64, 64, C) return x, interm_embeddings def forward(self, x): x, interm_embeddings = self.forward_features(x) x = x.permute(0, 3, 1, 2) x=self.neck(x) return x, interm_embeddings def preprocess(self, x: torch.Tensor) -> torch.Tensor: # Normalize colors have done # Pad h, w = x.shape[-2:] padh = self.img_size - h padw = self.img_size - w x = F.pad(x, (0, padw, 0, padh)) return x _checkpoint_url_format = \ 'https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/{}.pth' _provided_checkpoints = { 'tiny_vit_5m_224': 'tiny_vit_5m_22kto1k_distill', 'tiny_vit_11m_224': 'tiny_vit_11m_22kto1k_distill', 'tiny_vit_21m_224': 'tiny_vit_21m_22kto1k_distill', 'tiny_vit_21m_384': 'tiny_vit_21m_22kto1k_384_distill', 'tiny_vit_21m_512': 'tiny_vit_21m_22kto1k_512_distill', } def register_tiny_vit_model(fn): '''Register a TinyViT model It is a wrapper of `register_model` with loading the pretrained checkpoint. ''' def fn_wrapper(pretrained=False, **kwargs): model = fn() if pretrained: model_name = fn.__name__ assert model_name in _provided_checkpoints, \ f'Sorry that the checkpoint `{model_name}` is not provided yet.' url = _checkpoint_url_format.format( _provided_checkpoints[model_name]) checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location='cpu', check_hash=False, ) model.load_state_dict(checkpoint['model']) return model # rename the name of fn_wrapper fn_wrapper.__name__ = fn.__name__ return register_model(fn_wrapper) # @register_tiny_vit_model def tiny_vit_5m_224(pretrained=False, num_classes=1000, drop_path_rate=0.0): return TinyViT( num_classes=num_classes, embed_dims=[64, 128, 160, 320], depths=[2, 2, 6, 2], num_heads=[2, 4, 5, 10], window_sizes=[7, 7, 14, 7], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_11m_224(pretrained=False, num_classes=1000, drop_path_rate=0.1): return TinyViT( num_classes=num_classes, embed_dims=[64, 128, 256, 448], depths=[2, 2, 6, 2], num_heads=[2, 4, 8, 14], window_sizes=[7, 7, 14, 7], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_21m_224(pretrained=False, num_classes=1000, drop_path_rate=0.2): return TinyViT( num_classes=num_classes, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[7, 7, 14, 7], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_21m_384(pretrained=False, num_classes=1000, drop_path_rate=0.1): return TinyViT( img_size=384, num_classes=num_classes, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[12, 12, 24, 12], drop_path_rate=drop_path_rate, ) # @register_tiny_vit_model def tiny_vit_21m_512(pretrained=False, num_classes=1000, drop_path_rate=0.1): return TinyViT( img_size=512, num_classes=num_classes, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[16, 16, 32, 16], drop_path_rate=drop_path_rate, )