#!/bin/bash #SBATCH --job-name=frozenseg_eval #SBATCH --output=output/slurm/%j.run.out #SBATCH --error=output/slurm/%j.run.err #SBATCH --partition=gpu-a100 #SBATCH --gres=gpu:1 #SBATCH --cpus-per-task=16 #SBATCH --comment=yhx_team export MODULEPATH="/opt/app/spack/share/spack/modules/linux-centos7-haswell:/opt/app/spack/share/spack/modules/linux-centos7-cascadelake:/usr/share/Modules/modulefiles:/etc/modulefiles:/opt/app/modulefiles" source /users/cx_xchen/.bashrc_12.1 export DETECTRON2_DATASETS=/users/cx_xchen/DATASETS/ export TORCH_DISTRIBUTED_DEBUG=DETAIL export OMP_NUM_THREADS=1 export USE_SIMPLE_THREADED_LEVEL3=1 conda activate frozenseg configs=( # "configs/coco/frozenseg/convnext_large_eval_a847.yaml" # "configs/coco/frozenseg/convnext_large_eval_ade20k.yaml" # "configs/coco/frozenseg/convnext_large_eval_lvis.yaml" # "configs/coco/frozenseg/convnext_large_eval_pas21.yaml" "configs/coco/frozenseg/convnext_large_eval_pc459.yaml" # "configs/coco/frozenseg/convnext_large_eval_cityscapes.yaml" # "configs/coco/frozenseg/convnext_large_eval_coco.yaml" # "configs/coco/frozenseg/convnext_large_eval_mapillary_vistas.yaml" # configs/coco/frozenseg/convnext_large_eval_bdd_panop.yaml # configs/coco/frozenseg/convnext_large_eval_bdd_sem.yaml ) port=$((10000 + RANDOM % 50000)) sam=vit_b path=output/ConvNext-L_${sam}_1x for config in "${configs[@]}"; do python train_net.py --eval-only --num-gpus 1 --dist-url tcp://127.0.0.1:$port \ --config-file $config \ OUTPUT_DIR $path/$(basename "$config" .yaml) \ MODEL.WEIGHTS modified_model.pth \ MODEL.SAM_NAME vit_b \ MODEL.FROZEN_SEG.CLIP_PRETRAINED_WEIGHTS pretrained_checkpoint/models--laion--CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup/open_clip_pytorch_model.bin \ TEST.USE_SAM_MASKS False \ MODEL.FROZEN_SEG.GEOMETRIC_ENSEMBLE_BETA 0.6 done ########## with mask ensemble ######## # for config in "${configs[@]}"; do # python train_net.py --eval-only --num-gpus 1 --dist-url tcp://127.0.0.1:$port \ # --config-file $config \ # OUTPUT_DIR $path/w_maskEnsemble/$(basename "$config" .yaml) \ # MODEL.WEIGHTS $path/model_final.pth \ # MODEL.MASK_FORMER.SAM_QUERY_FUSE_LAYER 2 \ # MODEL.MASK_FORMER.SAM_FEATURE_FUSE_LAYER 0 \ # MODEL.SAM_NAME vit_b \ # MODEL.FROZEN_SEG.CLIP_PRETRAINED_WEIGHTS pretrained_checkpoint/models--laion--CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup/open_clip_pytorch_model.bin \ # TEST.USE_SAM_MASKS True \ # TEST.PKL_SAM_MODEL_NAME vit_h # done ########### test recall ############ # path=output/Sam_query/ConvNext-L_vit_b_1x # for config in "${configs[@]}"; do # srun python train_net.py --eval-only --num-gpus 4 --dist-url tcp://127.0.0.1:$port \ # --config-file $config \ # OUTPUT_DIR "output/Ablation/recall_withEverything/$(basename "$config" .yaml)" \ # MODEL.WEIGHTS "$path/model_final.pth" \ # TEST.USE_SAM_MASKS True \ # MODEL.MASK_FORMER.TEST.RECALL_ON True \ # MODEL.MASK_FORMER.TEST.SEMANTIC_ON False \ # MODEL.MASK_FORMER.TEST.INSTANCE_ON False \ # MODEL.MASK_FORMER.TEST.PANOPTIC_ON False \ # done