FrozenSeg / train_net.py
xichen98cn's picture
Upload 135 files
3dac99f verified
try:
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import copy
import itertools
import logging
import os
from collections import OrderedDict
from typing import Any, Dict, List, Set
import pycocotools.mask as mask_util
import torch
import numpy as np
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader, build_detection_test_loader
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
launch,
)
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
LVISEvaluator,
SemSegEvaluator,
verify_results,
)
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from frozenseg import (
COCOInstanceNewBaselineDatasetMapper,
COCOPanopticNewBaselineDatasetMapper,
InstanceSegEvaluator,
MaskFormerInstanceDatasetMapper,
MaskFormerPanopticDatasetMapper,
MaskFormerSemanticDatasetMapper,
SemanticSegmentorWithTTA,
add_maskformer2_config,
add_frozenseg_config,
)
from detectron2.solver import build_lr_scheduler
from collections import OrderedDict
from detectron2.utils.file_io import PathManager
from detectron2.utils.comm import all_gather, is_main_process, synchronize
import json
from detectron2.evaluation.sem_seg_evaluation import load_image_into_numpy_array
warnings.filterwarnings("ignore")
def prepare_class_names_from_metadata(metadata, train_metadata):
def split_labels(x):
res = []
for x_ in x:
x_ = x_.replace(', ', ',')
x_ = x_.split(',') # there can be multiple synonyms for single class
res.append(x_)
return res
# get text classifier
try:
class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
train_class_names = split_labels(train_metadata.stuff_classes)
except:
# this could be for insseg, where only thing_classes are available
class_names = split_labels(metadata.thing_classes)
train_class_names = split_labels(train_metadata.thing_classes)
train_class_names = {l for label in train_class_names for l in label}
category_overlapping_list = []
for test_class_names in class_names:
is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
category_overlapping_list.append(is_overlapping)
category_overlapping_list = np.array(category_overlapping_list)
return category_overlapping_list
class SemSegSeenUnseenRecallEvaluator(SemSegEvaluator):
def __init__(self,
dataset_name,
distributed=True,
output_dir=None,
*,
sem_seg_loading_fn=load_image_into_numpy_array,
num_classes=None,
ignore_label=None,
train_dataset_name = None):
# recall of the final result
super().__init__(dataset_name,distributed,output_dir,sem_seg_loading_fn=sem_seg_loading_fn,num_classes=num_classes,ignore_label=ignore_label)
train_metadata = MetadataCatalog.get(train_dataset_name)
test_metadata = MetadataCatalog.get(dataset_name)
self.category_overlapping_mask = prepare_class_names_from_metadata(test_metadata, train_metadata)
self.iou_thresholds = [0.5, 0.75, 0.9]
def reset(self):
self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64)
self._b_conf_matrix = np.zeros(
(self._num_classes + 1, self._num_classes + 1), dtype=np.int64
)
self._predictions = []
self._unseen_tp_cnt = np.zeros(len(self.iou_thresholds), dtype=np.int64)
self._seen_tp_cnt = np.zeros(len(self.iou_thresholds), dtype=np.int64)
self._unseen_labels = np.zeros(1, dtype=np.int64)
self._seen_labels = np.zeros(1, dtype=np.int64)
def process(self, inputs, outputs):
"""
outputs: list of dicts with key "sem_seg" that contains 250 queries semantic
segmentation prediction.
"""
for input, output in zip(inputs, outputs):
output = output["recall_seg"].to(self._cpu_device) # (n,h,w)
output = output>0
pred = np.array(output, dtype=int) #(n,h,w)
gt_filename = self.input_file_to_gt_file[input["file_name"]]
gt = self.sem_seg_loading_fn(gt_filename, dtype=int)
gt[gt == self._ignore_label] = self._num_classes
gt_classes = np.delete(np.unique(gt), np.where(np.unique(gt) == self._num_classes))
for c in gt_classes:
if self.category_overlapping_mask[c] == 1:
self._seen_labels += 1
else:
self._unseen_labels += 1
for i, thresh in enumerate(self.iou_thresholds):
for c in gt_classes:
mask_true = gt == c # (h,w)
iou = self.calculate_iou(mask_true, pred) # n
if self.category_overlapping_mask[c] == 1:
self._seen_tp_cnt[i] += np.any(iou>thresh)
else:
self._unseen_tp_cnt[i] += np.any(iou>thresh)
# [[tp_0.5, tp_0.75, tp_0.9], [tp_0.5, tp_0.75, tp_0.9]]
self._predictions.extend(self.encode_json_recall_seg(pred, input["file_name"]))
def calculate_iou(self, mask1, mask2):
intersection = np.logical_and(mask1, mask2)
union = np.logical_or(mask1, mask2)
return np.sum(intersection, axis=(1,2)) / np.sum(union, axis=(1,2))
def encode_json_recall_seg(self, recall_seg, input_file_name):
json_list = []
for mask_pred in recall_seg:
mask_pred = mask_pred.astype(np.uint8)
mask_rle = mask_util.encode(np.array(mask_pred[:,:,None], order="F"))[0]
mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
json_list.append(
{"file_name": input_file_name, "segmentation": mask_rle}
)
return json_list
def evaluate(self):
if self._distributed:
synchronize()
seen_tp_list = all_gather(self._seen_tp_cnt)
unseen_tp_list = all_gather(self._unseen_tp_cnt)
seen_labels = all_gather(self._seen_labels)
unseen_labels = all_gather(self._unseen_labels)
if not is_main_process():
return
self._seen_tp_cnt = np.zeros_like(self._seen_tp_cnt)
self._unseen_tp_cnt = np.zeros_like(self._unseen_tp_cnt)
self._seen_labels = np.zeros_like(self._seen_labels)
self._unseen_labels = np.zeros_like(self._unseen_labels)
for seen_tp in seen_tp_list:
self._seen_tp_cnt += seen_tp
for unseen_tp in unseen_tp_list:
self._unseen_tp_cnt += unseen_tp
for label1 in seen_labels:
self._seen_labels += label1
for label2 in unseen_labels:
self._unseen_labels += label2
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "recall_predictions.json")
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._predictions))
# instance-level Recall
seen_recalls = self._seen_tp_cnt / self._seen_labels
unseen_recalls = self._unseen_tp_cnt / self._unseen_labels
assert len(seen_recalls) == 3
assert len(unseen_recalls) == 3
res = {}
for i, iou_threshold in enumerate([0.5, 0.75, 0.9]):
res[f"S_Recall@IoU={iou_threshold:.2f}"] = 100 * seen_recalls[i]
res[f"U_Recall@IoU={iou_threshold:.2f}"] = 100 * unseen_recalls[i]
if self._output_dir:
file_path = os.path.join(self._output_dir, "recall_evaluation.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(res, f)
results = OrderedDict({"recall_seg": res})
self._logger.info(results)
return results
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to FrozenSeg.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each
builtin dataset. For your own dataset, you can simply create an
evaluator manually in your script and do not have to worry about the
hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
# semantic segmentation
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"] and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
if cfg.MODEL.MASK_FORMER.TEST.RECALL_ON:
evaluator_list.append(
SemSegSeenUnseenRecallEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
train_dataset_name=cfg.DATASETS.TRAIN[0]
)
)
# instance segmentation
if evaluator_type == "coco":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
# panoptic segmentation
if evaluator_type in [
"coco_panoptic_seg",
"ade20k_panoptic_seg",
"cityscapes_panoptic_seg",
"mapillary_vistas_panoptic_seg",
]:
if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
# COCO
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Mapillary Vistas
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Cityscapes
if evaluator_type == "cityscapes_instance":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "cityscapes_panoptic_seg":
if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) #!!!
if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
# ADE20K
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
# LVIS
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, output_dir=output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
# Semantic segmentation dataset mapper
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# Panoptic segmentation dataset mapper
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# Instance segmentation dataset mapper
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# coco instance segmentation lsj new baseline
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# coco panoptic segmentation lsj new baseline
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
return build_detection_test_loader(cfg, dataset_name)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
print(module_param_name)
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA.
logger.info("Running inference with test-time augmentation ...")
model = SemanticSegmentorWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_maskformer2_config(cfg)
add_frozenseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="frozenSeg",enable_propagation=True)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
frozen_params_exclude_text = 0
for n, p in model.named_parameters():
if p.requires_grad:
continue
if 'clip_model.token_embedding' in n or 'clip_model.positional_embedding' in n or 'clip_model.transformer' in n or 'clip_model.ln_final' in n or 'clip_model.text_projection' in n:
continue
frozen_params_exclude_text += p.numel()
print(f"total_params: {total_params}, trainable_params: {trainable_params}, frozen_params: {frozen_params}, frozen_params_exclude_text: {frozen_params_exclude_text}")
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)