Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import glob | |
import json | |
import os | |
from collections import Counter | |
import numpy as np | |
import tqdm | |
from panopticapi.utils import IdGenerator, save_json | |
from PIL import Image | |
import pycocotools.mask as mask_util | |
if __name__ == "__main__": | |
dataset_dir = os.getenv("DETECTRON2_DATASETS", "datasets") | |
for name, dirname in [("train", "training"), ("val", "validation")]: | |
image_dir = os.path.join(dataset_dir, f"ADEChallengeData2016/images/{dirname}/") | |
instance_dir = os.path.join( | |
dataset_dir, f"ADEChallengeData2016/annotations_instance/{dirname}/" | |
) | |
# img_id = 0 | |
ann_id = 1 | |
# json | |
out_file = os.path.join(dataset_dir, f"ADEChallengeData2016/ade20k_instance_{name}.json") | |
# json config | |
instance_config_file = "datasets/ade20k_instance_imgCatIds.json" | |
with open(instance_config_file) as f: | |
category_dict = json.load(f)["categories"] | |
# load catid mapping | |
# it is important to share category id for both instance and panoptic annotations | |
mapping_file = "datasets/ade20k_instance_catid_mapping.txt" | |
with open(mapping_file) as f: | |
map_id = {} | |
for i, line in enumerate(f.readlines()): | |
if i == 0: | |
continue | |
ins_id, sem_id, _ = line.strip().split() | |
# shift id by 1 because we want it to start from 0! | |
# ignore_label becomes 255 | |
map_id[int(ins_id)] = int(sem_id) - 1 | |
for cat in category_dict: | |
cat["id"] = map_id[cat["id"]] | |
filenames = sorted(glob.glob(os.path.join(image_dir, "*.jpg"))) | |
ann_dict = {} | |
images = [] | |
annotations = [] | |
for idx, filename in enumerate(tqdm.tqdm(filenames)): | |
image = {} | |
image_id = os.path.basename(filename).split(".")[0] | |
image["id"] = image_id | |
image["file_name"] = os.path.basename(filename) | |
original_format = np.array(Image.open(filename)) | |
image["width"] = original_format.shape[1] | |
image["height"] = original_format.shape[0] | |
images.append(image) | |
filename_instance = os.path.join(instance_dir, image_id + ".png") | |
ins_seg = np.asarray(Image.open(filename_instance)) | |
assert ins_seg.dtype == np.uint8 | |
instance_cat_ids = ins_seg[..., 0] | |
# instance id starts from 1! | |
# because 0 is reserved as VOID label | |
instance_ins_ids = ins_seg[..., 1] | |
# process things | |
for thing_id in np.unique(instance_ins_ids): | |
if thing_id == 0: | |
continue | |
mask = instance_ins_ids == thing_id | |
instance_cat_id = np.unique(instance_cat_ids[mask]) | |
assert len(instance_cat_id) == 1 | |
anno = {} | |
anno['id'] = ann_id | |
ann_id += 1 | |
anno['image_id'] = image['id'] | |
anno["iscrowd"] = int(0) | |
anno["category_id"] = int(map_id[instance_cat_id[0]]) | |
inds = np.nonzero(mask) | |
ymin, ymax = inds[0].min(), inds[0].max() | |
xmin, xmax = inds[1].min(), inds[1].max() | |
anno["bbox"] = [int(xmin), int(ymin), int(xmax - xmin + 1), int(ymax - ymin + 1)] | |
# if xmax <= xmin or ymax <= ymin: | |
# continue | |
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] | |
rle["counts"] = rle["counts"].decode("utf-8") | |
anno["segmentation"] = rle | |
anno["area"] = int(mask_util.area(rle)) | |
annotations.append(anno) | |
# save this | |
ann_dict['images'] = images | |
ann_dict['categories'] = category_dict | |
ann_dict['annotations'] = annotations | |
save_json(ann_dict, out_file) | |