FrozenSeg / frozenseg /frozenseg.py
xichen98cn's picture
Upload 135 files
3dac99f verified
raw
history blame
36 kB
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances
from detectron2.utils.memory import retry_if_cuda_oom
from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher
from segment_anything.build_sam import sam_model_registry
from .modeling.transformer_decoder.frozenseg_transformer_decoder import MaskPooling, get_classification_logits
from segment_anything import sam_model_registry
import pickle
VILD_PROMPT = [
"a photo of a {}.",
"This is a photo of a {}",
"There is a {} in the scene",
"There is the {} in the scene",
"a photo of a {} in the scene",
"a photo of a small {}.",
"a photo of a medium {}.",
"a photo of a large {}.",
"This is a photo of a small {}.",
"This is a photo of a medium {}.",
"This is a photo of a large {}.",
"There is a small {} in the scene.",
"There is a medium {} in the scene.",
"There is a large {} in the scene.",
]
@META_ARCH_REGISTRY.register()
class FrozenSeg(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
train_metadata,
test_metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
geometric_ensemble_alpha: float,
geometric_ensemble_beta: float,
ensemble_on_valid_mask: bool,
# FrozenSeg
sam_name: str,
mask_pred_alpha: float,
use_sam_masks: bool,
recall_on: bool,
pkl_sam_name: str,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.train_metadata = train_metadata
self.test_metadata = test_metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
self.mask_pooling = MaskPooling()
self.geometric_ensemble_alpha = geometric_ensemble_alpha
self.geometric_ensemble_beta = geometric_ensemble_beta
self.ensemble_on_valid_mask = ensemble_on_valid_mask
self.train_text_classifier = None
self.test_text_classifier = None
self.void_embedding = nn.Embedding(1, backbone.dim_latent) # use this for void
_, self.train_num_templates, self.train_class_names = self.prepare_class_names_from_metadata(train_metadata, train_metadata)
self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(test_metadata, train_metadata)
# sam args
sam_ckpt_path = {
'vit_t': './pretrained_checkpoint/mobile_sam.pt',
'vit_b': './pretrained_checkpoint/sam_vit_b_01ec64.pth',
'vit_l': './pretrained_checkpoint/sam_vit_l_0b3195.pth',
'vit_h': './pretrained_checkpoint/sam_vit_h_4b8939.pth',
}
self.sam = sam_model_registry[sam_name](checkpoint=sam_ckpt_path[sam_name])
# freeze SAM
for name, param in self.sam.named_parameters():
if 'mask_decoder' in name:
param.requires_grad = False
else:
param.requires_grad = False
if not self.training:
sam_mask_for_each_dataset={
"openvocab_ade20k_full_sem_seg_val": 'ade20k_val',
'openvocab_coco_2017_val_panoptic_with_sem_seg':'',
'openvocab_pascal_ctx59_sem_seg_val': 'pc_val',
'openvocab_pascal_ctx459_sem_seg_val': 'pc_val',
'openvocab_pascal21_sem_seg_val':'pas_val',
"bdd10k_val_sem_seg":'bdd_val',
}
self.sam_mask_dataset_name = sam_mask_for_each_dataset[self.test_metadata.name]
self.counter = 0
self.use_sam_masks = use_sam_masks
self.mask_pred_alpha = mask_pred_alpha
self.recall_on = recall_on
self.pkl_sam_name = pkl_sam_name
def prepare_class_names_from_metadata(self, metadata, train_metadata):
def split_labels(x):
res = []
for x_ in x:
x_ = x_.replace(', ', ',')
x_ = x_.split(',') # there can be multiple synonyms for single class
res.append(x_)
return res
# get text classifier
try:
class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
train_class_names = split_labels(train_metadata.stuff_classes)
except:
# this could be for insseg, where only thing_classes are available
class_names = split_labels(metadata.thing_classes)
train_class_names = split_labels(train_metadata.thing_classes)
train_class_names = {l for label in train_class_names for l in label}
category_overlapping_list = []
for test_class_names in class_names:
is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
category_overlapping_list.append(is_overlapping)
category_overlapping_mask = torch.tensor(
category_overlapping_list, dtype=torch.long)
def fill_all_templates_ensemble(x_=''):
res = []
for x in x_:
for template in VILD_PROMPT:
res.append(template.format(x))
return res, len(res) // len(VILD_PROMPT)
num_templates = []
templated_class_names = []
for x in class_names:
templated_classes, templated_classes_num = fill_all_templates_ensemble(x)
templated_class_names += templated_classes
num_templates.append(templated_classes_num) # how many templates for current classes
class_names = templated_class_names
return category_overlapping_mask, num_templates, class_names
def set_metadata(self, metadata):
self.test_metadata = metadata
self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(metadata, self.train_metadata)
self.test_text_classifier = None
return
def get_text_classifier(self):
if self.training:
if self.train_text_classifier is None:
text_classifier = []
# this is needed to avoid oom, which may happen when num of class is large
bs = 128
for idx in range(0, len(self.train_class_names), bs):
text_classifier.append(self.backbone.get_text_classifier(self.train_class_names[idx:idx+bs], self.device).detach())
text_classifier = torch.cat(text_classifier, dim=0)
# average across templates and normalization.
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
text_classifier = text_classifier.reshape(text_classifier.shape[0]//len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
self.train_text_classifier = text_classifier
return self.train_text_classifier, self.train_num_templates
else:
if self.test_text_classifier is None:
text_classifier = []
# this is needed to avoid oom, which may happen when num of class is large
bs = 128
for idx in range(0, len(self.test_class_names), bs):
text_classifier.append(self.backbone.get_text_classifier(self.test_class_names[idx:idx+bs], self.device).detach())
text_classifier = torch.cat(text_classifier, dim=0)
# average across templates and normalization.
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
text_classifier = text_classifier.reshape(text_classifier.shape[0]//len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
self.test_text_classifier = text_classifier
return self.test_text_classifier, self.test_num_templates
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
# Loss parameters:
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
# building criterion
matcher = HungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
if deep_supervision:
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
aux_weight_dict = {}
for i in range(dec_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ["labels", "masks"]
criterion = SetCriterion(
sem_seg_head.num_classes,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
)
#sem_seg_postprocess_before_inference: for panoptic and instance
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion": criterion,
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"train_metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"test_metadata": MetadataCatalog.get(cfg.DATASETS.TEST[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": (
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
or cfg.MODEL.MASK_FORMER.TEST.RECALL_ON
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
"recall_on": cfg.MODEL.MASK_FORMER.TEST.RECALL_ON,
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
"geometric_ensemble_alpha": cfg.MODEL.FROZEN_SEG.GEOMETRIC_ENSEMBLE_ALPHA,
"geometric_ensemble_beta": cfg.MODEL.FROZEN_SEG.GEOMETRIC_ENSEMBLE_BETA,
"ensemble_on_valid_mask": cfg.MODEL.FROZEN_SEG.ENSEMBLE_ON_VALID_MASK,
# FrozenSeg
"sam_name": cfg.MODEL.SAM_NAME,
"mask_pred_alpha": cfg.TEST.SAM_MASK_PRED_ALPHA,
'use_sam_masks': cfg.TEST.USE_SAM_MASKS,
"pkl_sam_name": cfg.TEST.PKL_SAM_MODEL_NAME
}
@property
def device(self):
return self.pixel_mean.device
def preprocess_wo_norm(self, x, resize=(512, 512)):
x = x.float()
x = F.interpolate(
x.unsqueeze(0),
size=resize,
mode="bilinear",
align_corners=False,
)
return x[0]
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg" if semantic_on
* "panoptic_seg" if panoptic_on
* "instances" if instance_on
* "recall_seg" if recall_on
"""
images = [x["image"].to(self.device) for x in batched_inputs] #raw images 3 1024 1024
if self.sam is None:
sam_embedding = None
else:
images_sam = [(x-self.sam.pixel_mean)/self.sam.pixel_std for x in images]
if not self.training:
images_sam = ImageList.from_tensors(images_sam, self.size_divisibility)
images_sam = images_sam.tensor.to(self.device)
images_sam = torch.stack([self.preprocess_wo_norm(x, resize=(1024,1024)) for x in images_sam], dim=0)
else:
images_sam = torch.stack(images_sam, dim=0).to(self.device)
last_embedding, interm_embeddings = self.sam.image_encoder(images_sam)
sam_embedding = (last_embedding, interm_embeddings)
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
features = self.backbone(images.tensor)
text_classifier, num_templates = self.get_text_classifier()
text_classifier = torch.cat([text_classifier, F.normalize(self.void_embedding.weight, dim=-1)], dim=0)
features['text_classifier'] = text_classifier
features['num_templates'] = num_templates
features['sam_embedding'] = sam_embedding
features['sam'] = self.sam
outputs = self.sem_seg_head(features)
if self.training:
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances, images)
else:
targets = None
# bipartite matching-based loss
losses = self.criterion(outputs, targets)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
clip_feature = features["clip_vis_dense"]
mask_for_pooling = F.interpolate(mask_pred_results, size=clip_feature.shape[-2:],
mode='bilinear', align_corners=False)
if "convnext" in self.backbone.model_name.lower():
pooled_clip_feature = self.mask_pooling(clip_feature, mask_for_pooling) #mask>0
pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature)
elif "rn" in self.backbone.model_name.lower():
pooled_clip_feature = self.backbone.visual_prediction_forward(clip_feature, mask_for_pooling)
else:
raise NotImplementedError
out_vocab_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)
in_vocab_cls_results = mask_cls_results[..., :-1] # remove void
out_vocab_cls_results = out_vocab_cls_results[..., :-1] # remove void
out_vocab_cls_probs = out_vocab_cls_results.softmax(-1)
in_vocab_cls_results = in_vocab_cls_results.softmax(-1)
category_overlapping_mask = self.category_overlapping_mask.to(self.device)
if self.ensemble_on_valid_mask:
# Only include out_vocab cls results on masks with valid pixels
# We empirically find that this is important to obtain reasonable AP/mIOU score with ResNet CLIP models
valid_masking = (mask_for_pooling > 0).to(mask_for_pooling).sum(-1).sum(-1) > 0
valid_masking = valid_masking.to(in_vocab_cls_results.dtype).unsqueeze(-1)
alpha = torch.ones_like(in_vocab_cls_results) * self.geometric_ensemble_alpha
beta = torch.ones_like(in_vocab_cls_results) * self.geometric_ensemble_beta
alpha = alpha * valid_masking
beta = beta * valid_masking
else:
alpha = self.geometric_ensemble_alpha
beta = self.geometric_ensemble_beta
cls_logits_seen = (
(in_vocab_cls_results ** (1 - alpha) * out_vocab_cls_probs**alpha).log()
* category_overlapping_mask
)
cls_logits_unseen = (
(in_vocab_cls_results ** (1 - beta) * out_vocab_cls_probs**beta).log()
* (1 - category_overlapping_mask)
)
cls_results = cls_logits_seen + cls_logits_unseen
# This is used to filtering void predictions.
is_void_prob = F.softmax(mask_cls_results, dim=-1)[..., -1:]
mask_cls_probs = torch.cat([
cls_results.softmax(-1) * (1.0 - is_void_prob),
is_void_prob], dim=-1)
mask_cls_results = torch.log(mask_cls_probs + 1e-8)
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
del outputs
processed_results = []
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference: # panoptic on
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
if self.use_sam_masks:
assert not self.training
img_id = input_per_image.get("image_id", None)
if img_id is None:
filename = input_per_image.get('file_name', None)
if filename is None:
assert NameError, 'No image_id or file_name in input_per_image'
elif filename is not None:
img_id = filename.split('/')[-1].split('.')[0]
with open(f'output/SAM_masks_pred/{self.pkl_sam_name}_{self.sam_mask_dataset_name}/{img_id}.pkl', 'rb') as f:
everything_mask = pickle.load(f)
sam_mask_pred = [torch.from_numpy(mask['preds']).to(mask_cls_result.device) for mask in everything_mask]
if len(sam_mask_pred) == 0:
sam_mask_pred = None
sam_cls_results = None
sam_iou_scores = None
else:
sam_mask_pred = torch.stack(sam_mask_pred, dim=0) # M, H, W
sam_iou_scores = [torch.tensor(mask['predicted_iou']).sigmoid().to(mask_cls_result.device) for mask in everything_mask]
sam_iou_scores = torch.stack(sam_iou_scores, dim=0) # M, 1
sam_mask_for_pooling_clip = F.interpolate(sam_mask_pred.unsqueeze(0), size=clip_feature.shape[-2:], mode="nearest")
sam_mask_for_pooling_clip = ImageList.from_tensors([sam_mask_for_pooling_clip[0]], self.size_divisibility)
if 'convnext' in self.backbone.model_name.lower():
sam_pooled_clip_feature = self.mask_pooling(clip_feature, sam_mask_for_pooling_clip.tensor.to(torch.float32))
sam_pooled_clip_feature = self.backbone.visual_prediction_forward(sam_pooled_clip_feature)
sam_cls_results = get_classification_logits(sam_pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)
elif "rn" in self.backbone.model_name.lower():
sam_pooled_clip_feature = self.backbone.visual_prediction_forward(clip_feature, sam_mask_for_pooling_clip.tensor.to(torch.float32))
sam_cls_results = get_classification_logits(sam_pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates) # have nan
else:
print("not support")
raise NotImplementedError
sam_mask_pred = sam_mask_pred.to(mask_pred_result)
sam_cls_results = sam_cls_results.to(mask_cls_result)
if not self.sem_seg_postprocess_before_inference: #### For semantic segmentation and recall inference
mask_pred_result = mask_pred_result[:, :image_size[0], :image_size[1]]
del everything_mask
#######################################################
if self.recall_on and not self.use_sam_masks:
res = retry_if_cuda_oom(self.recall_inference)(mask_pred_result)
processed_results[-1]["recall_seg"] = res
elif self.recall_on and self.use_sam_masks:
if sam_mask_pred.shape[-2:] != mask_pred_result.shape[-2:]:
sam_mask_pred = F.interpolate(sam_mask_pred.unsqueeze(0), size=mask_pred_result.shape[-2:], mode="bilinear", align_corners=False)[0]
res = retry_if_cuda_oom(self.recall_inference_with_everything)(mask_pred_result, sam_mask_pred)
res = retry_if_cuda_oom(sem_seg_postprocess)(res, image_size, height, width)
processed_results[-1]["recall_seg"] = res
if self.semantic_on:
if self.use_sam_masks:
if sam_mask_pred.shape[-2:] != mask_pred_result.shape[-2:]:
sam_mask_pred = F.interpolate(sam_mask_pred.unsqueeze(0), size=mask_pred_result.shape[-2:], mode="bilinear", align_corners=False)[0]
res = self.geo_with_sam_inference(mask_cls_result, mask_pred_result, sam_mask_pred, sam_cls_results, category_overlapping_mask)
else:
res = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference : # for sem seg
res = retry_if_cuda_oom(sem_seg_postprocess)(res, image_size, height, width)
processed_results[-1]["sem_seg"] = res
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["instances"] = instance_r
return processed_results
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for targets_per_image in targets:
# pad gt
gt_masks = targets_per_image.gt_masks
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": padded_masks,
}
)
return new_targets
def resize_feat(self, x, resize_shape):
x = F.interpolate(
x,
size=(resize_shape[0], resize_shape[1]),
mode="bilinear",
align_corners=False,
)
return x
def recall_inference(self, mask_pred):
"""
Return: (q, h, w)
"""
return mask_pred
def recall_inference_with_everything(self, mask_pred, sam_mask_pred):
"""
Return: (q, h, w)
"""
if sam_mask_pred is None:
return self.recall_inference(mask_pred)
return torch.cat([mask_pred, sam_mask_pred], dim=0)
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
mask_pred = mask_pred.sigmoid()
num_classes = len(self.test_metadata.stuff_classes)
keep = labels.ne(num_classes) & (scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]): # through all mask queries
pred_class = cur_classes[k].item()
isthing = pred_class in self.test_metadata.thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold: # 0.8 for coco, 0 for else.
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def geo_with_sam_inference(self, mask_cls, mask_pred, sam_mask_pred, sam_mask_cls, category_overlapping_mask=None):
if sam_mask_cls is None:
return self.semantic_inference(mask_cls, mask_pred)
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
sam_mask_cls = F.softmax(sam_mask_cls, dim=-1)[..., :-1].squeeze(0) # M, C
mask_pred = mask_pred.sigmoid()
sam_mask_pred = sam_mask_pred.sigmoid()
alpha = self.mask_pred_alpha
beta = 0.
in_mask_cls = mask_cls * category_overlapping_mask.view(1,-1) # (q,c)
out_mask_cls = mask_cls * (1 - category_overlapping_mask).view(1,-1) # (q,c) # 0
out_mask_cls = out_mask_cls * (1-alpha)
in_mask_cls = in_mask_cls * (1-beta)
## MaskEnsemble
in_sam_mask_cls = sam_mask_cls * category_overlapping_mask.view(1,-1) # (m,c)
out_sam_mask_cls = sam_mask_cls * (1 - category_overlapping_mask).view(1,-1) # (m,c)
sam_mask_left = out_sam_mask_cls.max(dim=1).values>0.5 # m
out_sam_mask_cls = out_sam_mask_cls[sam_mask_left] # m', c
out_sam_mask_pred = sam_mask_pred[sam_mask_left] # m', h, w
out_sam_mask_cls = out_sam_mask_cls * alpha
in_sam_mask_cls = in_sam_mask_cls * beta
in_semseg = torch.einsum("qc,qhw->chw", in_mask_cls, mask_pred)
out_semseg = torch.einsum("qc,qhw->chw", out_mask_cls, mask_pred)
if not out_sam_mask_cls.shape[0]==0:
out_sam_semseg = torch.einsum("mc,mhw->chw", out_sam_mask_cls, out_sam_mask_pred)
else:
out_sam_semseg = torch.zeros_like(out_semseg)
out_semseg = out_semseg + out_sam_semseg
semseg = in_semseg + out_semseg
return semseg
def instance_inference(self, mask_cls, mask_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
# if this is panoptic segmentation
if self.panoptic_on:
num_classes = len(self.test_metadata.stuff_classes)
else:
num_classes = len(self.test_metadata.thing_classes)
labels = torch.arange(num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // num_classes
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.test_metadata.thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result