Spaces:
Runtime error
Runtime error
File size: 21,293 Bytes
3dac99f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
try:
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import copy
import itertools
import logging
import os
from collections import OrderedDict
from typing import Any, Dict, List, Set
import pycocotools.mask as mask_util
import torch
import numpy as np
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader, build_detection_test_loader
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
launch,
)
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
LVISEvaluator,
SemSegEvaluator,
verify_results,
)
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from frozenseg import (
COCOInstanceNewBaselineDatasetMapper,
COCOPanopticNewBaselineDatasetMapper,
InstanceSegEvaluator,
MaskFormerInstanceDatasetMapper,
MaskFormerPanopticDatasetMapper,
MaskFormerSemanticDatasetMapper,
SemanticSegmentorWithTTA,
add_maskformer2_config,
add_frozenseg_config,
)
from detectron2.solver import build_lr_scheduler
from collections import OrderedDict
from detectron2.utils.file_io import PathManager
from detectron2.utils.comm import all_gather, is_main_process, synchronize
import json
from detectron2.evaluation.sem_seg_evaluation import load_image_into_numpy_array
warnings.filterwarnings("ignore")
def prepare_class_names_from_metadata(metadata, train_metadata):
def split_labels(x):
res = []
for x_ in x:
x_ = x_.replace(', ', ',')
x_ = x_.split(',') # there can be multiple synonyms for single class
res.append(x_)
return res
# get text classifier
try:
class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
train_class_names = split_labels(train_metadata.stuff_classes)
except:
# this could be for insseg, where only thing_classes are available
class_names = split_labels(metadata.thing_classes)
train_class_names = split_labels(train_metadata.thing_classes)
train_class_names = {l for label in train_class_names for l in label}
category_overlapping_list = []
for test_class_names in class_names:
is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
category_overlapping_list.append(is_overlapping)
category_overlapping_list = np.array(category_overlapping_list)
return category_overlapping_list
class SemSegSeenUnseenRecallEvaluator(SemSegEvaluator):
def __init__(self,
dataset_name,
distributed=True,
output_dir=None,
*,
sem_seg_loading_fn=load_image_into_numpy_array,
num_classes=None,
ignore_label=None,
train_dataset_name = None):
# recall of the final result
super().__init__(dataset_name,distributed,output_dir,sem_seg_loading_fn=sem_seg_loading_fn,num_classes=num_classes,ignore_label=ignore_label)
train_metadata = MetadataCatalog.get(train_dataset_name)
test_metadata = MetadataCatalog.get(dataset_name)
self.category_overlapping_mask = prepare_class_names_from_metadata(test_metadata, train_metadata)
self.iou_thresholds = [0.5, 0.75, 0.9]
def reset(self):
self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64)
self._b_conf_matrix = np.zeros(
(self._num_classes + 1, self._num_classes + 1), dtype=np.int64
)
self._predictions = []
self._unseen_tp_cnt = np.zeros(len(self.iou_thresholds), dtype=np.int64)
self._seen_tp_cnt = np.zeros(len(self.iou_thresholds), dtype=np.int64)
self._unseen_labels = np.zeros(1, dtype=np.int64)
self._seen_labels = np.zeros(1, dtype=np.int64)
def process(self, inputs, outputs):
"""
outputs: list of dicts with key "sem_seg" that contains 250 queries semantic
segmentation prediction.
"""
for input, output in zip(inputs, outputs):
output = output["recall_seg"].to(self._cpu_device) # (n,h,w)
output = output>0
pred = np.array(output, dtype=int) #(n,h,w)
gt_filename = self.input_file_to_gt_file[input["file_name"]]
gt = self.sem_seg_loading_fn(gt_filename, dtype=int)
gt[gt == self._ignore_label] = self._num_classes
gt_classes = np.delete(np.unique(gt), np.where(np.unique(gt) == self._num_classes))
for c in gt_classes:
if self.category_overlapping_mask[c] == 1:
self._seen_labels += 1
else:
self._unseen_labels += 1
for i, thresh in enumerate(self.iou_thresholds):
for c in gt_classes:
mask_true = gt == c # (h,w)
iou = self.calculate_iou(mask_true, pred) # n
if self.category_overlapping_mask[c] == 1:
self._seen_tp_cnt[i] += np.any(iou>thresh)
else:
self._unseen_tp_cnt[i] += np.any(iou>thresh)
# [[tp_0.5, tp_0.75, tp_0.9], [tp_0.5, tp_0.75, tp_0.9]]
self._predictions.extend(self.encode_json_recall_seg(pred, input["file_name"]))
def calculate_iou(self, mask1, mask2):
intersection = np.logical_and(mask1, mask2)
union = np.logical_or(mask1, mask2)
return np.sum(intersection, axis=(1,2)) / np.sum(union, axis=(1,2))
def encode_json_recall_seg(self, recall_seg, input_file_name):
json_list = []
for mask_pred in recall_seg:
mask_pred = mask_pred.astype(np.uint8)
mask_rle = mask_util.encode(np.array(mask_pred[:,:,None], order="F"))[0]
mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
json_list.append(
{"file_name": input_file_name, "segmentation": mask_rle}
)
return json_list
def evaluate(self):
if self._distributed:
synchronize()
seen_tp_list = all_gather(self._seen_tp_cnt)
unseen_tp_list = all_gather(self._unseen_tp_cnt)
seen_labels = all_gather(self._seen_labels)
unseen_labels = all_gather(self._unseen_labels)
if not is_main_process():
return
self._seen_tp_cnt = np.zeros_like(self._seen_tp_cnt)
self._unseen_tp_cnt = np.zeros_like(self._unseen_tp_cnt)
self._seen_labels = np.zeros_like(self._seen_labels)
self._unseen_labels = np.zeros_like(self._unseen_labels)
for seen_tp in seen_tp_list:
self._seen_tp_cnt += seen_tp
for unseen_tp in unseen_tp_list:
self._unseen_tp_cnt += unseen_tp
for label1 in seen_labels:
self._seen_labels += label1
for label2 in unseen_labels:
self._unseen_labels += label2
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "recall_predictions.json")
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._predictions))
# instance-level Recall
seen_recalls = self._seen_tp_cnt / self._seen_labels
unseen_recalls = self._unseen_tp_cnt / self._unseen_labels
assert len(seen_recalls) == 3
assert len(unseen_recalls) == 3
res = {}
for i, iou_threshold in enumerate([0.5, 0.75, 0.9]):
res[f"S_Recall@IoU={iou_threshold:.2f}"] = 100 * seen_recalls[i]
res[f"U_Recall@IoU={iou_threshold:.2f}"] = 100 * unseen_recalls[i]
if self._output_dir:
file_path = os.path.join(self._output_dir, "recall_evaluation.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(res, f)
results = OrderedDict({"recall_seg": res})
self._logger.info(results)
return results
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to FrozenSeg.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each
builtin dataset. For your own dataset, you can simply create an
evaluator manually in your script and do not have to worry about the
hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
# semantic segmentation
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"] and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
if cfg.MODEL.MASK_FORMER.TEST.RECALL_ON:
evaluator_list.append(
SemSegSeenUnseenRecallEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
train_dataset_name=cfg.DATASETS.TRAIN[0]
)
)
# instance segmentation
if evaluator_type == "coco":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
# panoptic segmentation
if evaluator_type in [
"coco_panoptic_seg",
"ade20k_panoptic_seg",
"cityscapes_panoptic_seg",
"mapillary_vistas_panoptic_seg",
]:
if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
# COCO
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Mapillary Vistas
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
# Cityscapes
if evaluator_type == "cityscapes_instance":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "cityscapes_panoptic_seg":
if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) #!!!
if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
# ADE20K
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
# LVIS
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, output_dir=output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
# Semantic segmentation dataset mapper
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# Panoptic segmentation dataset mapper
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# Instance segmentation dataset mapper
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# coco instance segmentation lsj new baseline
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
# coco panoptic segmentation lsj new baseline
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
return build_detection_test_loader(cfg, dataset_name)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
print(module_param_name)
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA.
logger.info("Running inference with test-time augmentation ...")
model = SemanticSegmentorWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_maskformer2_config(cfg)
add_frozenseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="frozenSeg",enable_propagation=True)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
frozen_params_exclude_text = 0
for n, p in model.named_parameters():
if p.requires_grad:
continue
if 'clip_model.token_embedding' in n or 'clip_model.positional_embedding' in n or 'clip_model.transformer' in n or 'clip_model.ln_final' in n or 'clip_model.text_projection' in n:
continue
frozen_params_exclude_text += p.numel()
print(f"total_params: {total_params}, trainable_params: {trainable_params}, frozen_params: {frozen_params}, frozen_params_exclude_text: {frozen_params_exclude_text}")
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
|