File size: 21,293 Bytes
3dac99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
try:
    from shapely.errors import ShapelyDeprecationWarning
    import warnings
    warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
    pass

import copy
import itertools    
import logging
import os

from collections import OrderedDict
from typing import Any, Dict, List, Set
import pycocotools.mask as mask_util

import torch
import numpy as np
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader, build_detection_test_loader
from detectron2.engine import (
    DefaultTrainer,
    default_argument_parser,
    default_setup,
    launch,
)
from detectron2.evaluation import (
    CityscapesInstanceEvaluator,
    CityscapesSemSegEvaluator,
    COCOEvaluator,
    COCOPanopticEvaluator,
    DatasetEvaluators,
    LVISEvaluator,
    SemSegEvaluator,
    verify_results,
)
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger

from frozenseg import (
    COCOInstanceNewBaselineDatasetMapper,
    COCOPanopticNewBaselineDatasetMapper,
    InstanceSegEvaluator,
    MaskFormerInstanceDatasetMapper,
    MaskFormerPanopticDatasetMapper,
    MaskFormerSemanticDatasetMapper,
    SemanticSegmentorWithTTA,
    add_maskformer2_config,
    add_frozenseg_config,
)
from detectron2.solver import build_lr_scheduler
from collections import OrderedDict
from detectron2.utils.file_io import PathManager
from detectron2.utils.comm import all_gather, is_main_process, synchronize
import json
from detectron2.evaluation.sem_seg_evaluation import load_image_into_numpy_array
warnings.filterwarnings("ignore")


def prepare_class_names_from_metadata(metadata, train_metadata):
    def split_labels(x):
        res = []
        for x_ in x:
            x_ = x_.replace(', ', ',')
            x_ = x_.split(',') # there can be multiple synonyms for single class
            res.append(x_)
        return res
    # get text classifier
    try:
        class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
        train_class_names = split_labels(train_metadata.stuff_classes)
    except:
        # this could be for insseg, where only thing_classes are available
        class_names = split_labels(metadata.thing_classes)
        train_class_names = split_labels(train_metadata.thing_classes)
    train_class_names = {l for label in train_class_names for l in label}
    category_overlapping_list = []
    for test_class_names in class_names:
        is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
        category_overlapping_list.append(is_overlapping)
    category_overlapping_list = np.array(category_overlapping_list)
    
    return category_overlapping_list


class SemSegSeenUnseenRecallEvaluator(SemSegEvaluator):
    def __init__(self,
        dataset_name,
        distributed=True,
        output_dir=None,
        *,
        sem_seg_loading_fn=load_image_into_numpy_array,
        num_classes=None,
        ignore_label=None,
        train_dataset_name = None):
        # recall of the final result
        super().__init__(dataset_name,distributed,output_dir,sem_seg_loading_fn=sem_seg_loading_fn,num_classes=num_classes,ignore_label=ignore_label)
        train_metadata =  MetadataCatalog.get(train_dataset_name)
        test_metadata = MetadataCatalog.get(dataset_name)
        self.category_overlapping_mask = prepare_class_names_from_metadata(test_metadata, train_metadata)
        self.iou_thresholds =  [0.5, 0.75, 0.9]
    
    def reset(self):
        self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64)
        self._b_conf_matrix = np.zeros(
            (self._num_classes + 1, self._num_classes + 1), dtype=np.int64
        )
        self._predictions = []
        self._unseen_tp_cnt = np.zeros(len(self.iou_thresholds), dtype=np.int64)
        self._seen_tp_cnt = np.zeros(len(self.iou_thresholds), dtype=np.int64)
        self._unseen_labels = np.zeros(1, dtype=np.int64)
        self._seen_labels = np.zeros(1, dtype=np.int64)

    def process(self, inputs, outputs):
        """
         outputs: list of dicts with key "sem_seg" that contains 250 queries semantic
                segmentation prediction.
        """

        for input, output in zip(inputs, outputs):
            output = output["recall_seg"].to(self._cpu_device) # (n,h,w)
            output = output>0
            pred = np.array(output, dtype=int) #(n,h,w)
            gt_filename = self.input_file_to_gt_file[input["file_name"]]
            gt = self.sem_seg_loading_fn(gt_filename, dtype=int)
            gt[gt == self._ignore_label] = self._num_classes
            gt_classes = np.delete(np.unique(gt), np.where(np.unique(gt) == self._num_classes))
            for c in gt_classes:
                if self.category_overlapping_mask[c] == 1:
                    self._seen_labels += 1
                else:
                    self._unseen_labels += 1
            for i, thresh in enumerate(self.iou_thresholds):
                for c in gt_classes:
                    mask_true = gt == c # (h,w)
                    iou = self.calculate_iou(mask_true, pred) # n
                    if self.category_overlapping_mask[c] == 1:
                        self._seen_tp_cnt[i] += np.any(iou>thresh)
                    else:
                        self._unseen_tp_cnt[i] += np.any(iou>thresh)
            # [[tp_0.5, tp_0.75, tp_0.9], [tp_0.5, tp_0.75, tp_0.9]]
            self._predictions.extend(self.encode_json_recall_seg(pred, input["file_name"]))
            
    def calculate_iou(self, mask1, mask2):
        intersection = np.logical_and(mask1, mask2)
        union = np.logical_or(mask1, mask2)
        return np.sum(intersection, axis=(1,2)) / np.sum(union, axis=(1,2))    
    
    def encode_json_recall_seg(self, recall_seg, input_file_name):
        json_list = []
        for mask_pred in recall_seg:
            mask_pred = mask_pred.astype(np.uint8)
            mask_rle = mask_util.encode(np.array(mask_pred[:,:,None], order="F"))[0]
            mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
            json_list.append(
                {"file_name": input_file_name, "segmentation": mask_rle}
            )
        return json_list
    
    def evaluate(self):
        if self._distributed:
            synchronize()
            seen_tp_list = all_gather(self._seen_tp_cnt)
            unseen_tp_list = all_gather(self._unseen_tp_cnt)
            seen_labels = all_gather(self._seen_labels)
            unseen_labels = all_gather(self._unseen_labels)
            if not is_main_process():
                return
            self._seen_tp_cnt = np.zeros_like(self._seen_tp_cnt)
            self._unseen_tp_cnt = np.zeros_like(self._unseen_tp_cnt)
            self._seen_labels = np.zeros_like(self._seen_labels)
            self._unseen_labels = np.zeros_like(self._unseen_labels)
            for seen_tp in seen_tp_list:
                self._seen_tp_cnt += seen_tp
            for unseen_tp in unseen_tp_list:
                self._unseen_tp_cnt += unseen_tp
            for label1 in seen_labels:
                self._seen_labels += label1
            for label2 in unseen_labels:
                self._unseen_labels += label2

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir, "recall_predictions.json")
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(self._predictions))
        # instance-level Recall
        seen_recalls = self._seen_tp_cnt / self._seen_labels
        unseen_recalls = self._unseen_tp_cnt / self._unseen_labels
        assert len(seen_recalls) == 3
        assert len(unseen_recalls) == 3
        res = {}
        for i, iou_threshold in enumerate([0.5, 0.75, 0.9]):
            res[f"S_Recall@IoU={iou_threshold:.2f}"] = 100 * seen_recalls[i]
            res[f"U_Recall@IoU={iou_threshold:.2f}"] = 100 * unseen_recalls[i]

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "recall_evaluation.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(res, f)
        results = OrderedDict({"recall_seg": res})
        self._logger.info(results)
        return results    
    
class Trainer(DefaultTrainer):
    """
    Extension of the Trainer class adapted to FrozenSeg.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each
        builtin dataset. For your own dataset, you can simply create an
        evaluator manually in your script and do not have to worry about the
        hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        # semantic segmentation
        if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"] and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
            evaluator_list.append(
                SemSegEvaluator(
                    dataset_name,
                    distributed=True,
                    output_dir=output_folder,
                )
            )
        if cfg.MODEL.MASK_FORMER.TEST.RECALL_ON:
            evaluator_list.append(
                SemSegSeenUnseenRecallEvaluator(
                    dataset_name,
                    distributed=True,
                    output_dir=output_folder,
                    train_dataset_name=cfg.DATASETS.TRAIN[0]
                )
            )
        # instance segmentation
        if evaluator_type == "coco":
            evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
        # panoptic segmentation
        if evaluator_type in [
            "coco_panoptic_seg",
            "ade20k_panoptic_seg",
            "cityscapes_panoptic_seg",
            "mapillary_vistas_panoptic_seg",
        ]:
            if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
                evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        # COCO
        if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
            evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
        if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
            evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
        # Mapillary Vistas
        if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
            evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
        if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
            evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
        # Cityscapes
        if evaluator_type == "cityscapes_instance":
            assert (
                torch.cuda.device_count() > comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesInstanceEvaluator(dataset_name)
        if evaluator_type == "cityscapes_sem_seg":
            assert (
                torch.cuda.device_count() > comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesSemSegEvaluator(dataset_name)
        if evaluator_type == "cityscapes_panoptic_seg":
            if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
                assert (
                    torch.cuda.device_count() > comm.get_rank()
                ), "CityscapesEvaluator currently do not work with multiple machines."
                evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) #!!!
            if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
                assert (
                    torch.cuda.device_count() > comm.get_rank()
                ), "CityscapesEvaluator currently do not work with multiple machines."
                evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
        # ADE20K
        if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
            evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
        # LVIS
        if evaluator_type == "lvis":
            return LVISEvaluator(dataset_name, output_dir=output_folder)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_train_loader(cls, cfg):
        # Semantic segmentation dataset mapper
        if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
            mapper = MaskFormerSemanticDatasetMapper(cfg, True)
            return build_detection_train_loader(cfg, mapper=mapper)
        # Panoptic segmentation dataset mapper
        elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
            mapper = MaskFormerPanopticDatasetMapper(cfg, True)
            return build_detection_train_loader(cfg, mapper=mapper)
        # Instance segmentation dataset mapper
        elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
            mapper = MaskFormerInstanceDatasetMapper(cfg, True)
            return build_detection_train_loader(cfg, mapper=mapper)
        # coco instance segmentation lsj new baseline
        elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
            mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
            return build_detection_train_loader(cfg, mapper=mapper)
        # coco panoptic segmentation lsj new baseline
        elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
            mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
            return build_detection_train_loader(cfg, mapper=mapper)
        else:
            mapper = None
            return build_detection_train_loader(cfg, mapper=mapper)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)
    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        return build_detection_test_loader(cfg, dataset_name)
    
    @classmethod
    def build_optimizer(cls, cfg, model):
        weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
        weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED

        defaults = {}
        defaults["lr"] = cfg.SOLVER.BASE_LR
        defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY

        norm_module_types = (
            torch.nn.BatchNorm1d,
            torch.nn.BatchNorm2d,
            torch.nn.BatchNorm3d,
            torch.nn.SyncBatchNorm,
            # NaiveSyncBatchNorm inherits from BatchNorm2d
            torch.nn.GroupNorm,
            torch.nn.InstanceNorm1d,
            torch.nn.InstanceNorm2d,
            torch.nn.InstanceNorm3d,
            torch.nn.LayerNorm,
            torch.nn.LocalResponseNorm,
        )

        params: List[Dict[str, Any]] = []
        memo: Set[torch.nn.parameter.Parameter] = set()
        for module_name, module in model.named_modules():
            for module_param_name, value in module.named_parameters(recurse=False):
                if not value.requires_grad:
                    continue
                # Avoid duplicating parameters
                if value in memo:
                    continue
                memo.add(value)

                hyperparams = copy.copy(defaults)
                if "backbone" in module_name:
                    hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
                if (
                    "relative_position_bias_table" in module_param_name
                    or "absolute_pos_embed" in module_param_name
                ):
                    print(module_param_name)
                    hyperparams["weight_decay"] = 0.0
                if isinstance(module, norm_module_types):
                    hyperparams["weight_decay"] = weight_decay_norm
                if isinstance(module, torch.nn.Embedding):
                    hyperparams["weight_decay"] = weight_decay_embed
                params.append({"params": [value], **hyperparams})

        def maybe_add_full_model_gradient_clipping(optim):
            # detectron2 doesn't have full model gradient clipping now
            clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
            enable = (
                cfg.SOLVER.CLIP_GRADIENTS.ENABLED
                and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
                and clip_norm_val > 0.0
            )

            class FullModelGradientClippingOptimizer(optim):
                def step(self, closure=None):
                    all_params = itertools.chain(*[x["params"] for x in self.param_groups])
                    torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
                    super().step(closure=closure)

            return FullModelGradientClippingOptimizer if enable else optim

        optimizer_type = cfg.SOLVER.OPTIMIZER
        if optimizer_type == "SGD":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
                params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
            )
        elif optimizer_type == "ADAMW":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
                params, cfg.SOLVER.BASE_LR
            )
        else:
            raise NotImplementedError(f"no optimizer type {optimizer_type}")
        if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
            optimizer = maybe_add_gradient_clipping(cfg, optimizer)
        return optimizer

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA.
        logger.info("Running inference with test-time augmentation ...")
        model = SemanticSegmentorWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    add_maskformer2_config(cfg)
    add_frozenseg_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="frozenSeg",enable_propagation=True)
    return cfg


def main(args):
    cfg = setup(args)
    if args.eval_only:
        model = Trainer.build_model(cfg)

        total_params = sum(p.numel() for p in model.parameters())
        trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
        frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
        frozen_params_exclude_text = 0
        for n, p in model.named_parameters():
            if p.requires_grad:
                continue
            if 'clip_model.token_embedding' in n or 'clip_model.positional_embedding' in n or 'clip_model.transformer' in n or 'clip_model.ln_final' in n or 'clip_model.text_projection' in n:
                continue
            frozen_params_exclude_text += p.numel()    
        print(f"total_params: {total_params}, trainable_params: {trainable_params}, frozen_params: {frozen_params}, frozen_params_exclude_text: {frozen_params_exclude_text}")

        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
           
        res = Trainer.test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()

if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )