LKCell / base_ml /base_experiment.py
xiazhi1
initial commit
aea73e2
raw
history blame contribute delete
No virus
15.2 kB
# -*- coding: utf-8 -*-
# Base Machine Learning Experiment
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import copy
import inspect
import logging
import os
import random
import sys
from abc import abstractmethod
from pathlib import Path
from typing import Tuple, Union
import argparse
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import yaml
from pydantic import BaseModel
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from torch.optim.lr_scheduler import ConstantLR, _LRScheduler
from torch.utils.data import Dataset, Sampler
from base_ml.base_optim import OPTI_DICT
from base_ml.base_validator import sweep_schema
from utils.logger import Logger
from utils.tools import flatten_dict, remove_parameter_tag, unflatten_dict
from base_ml.optim_factory import LayerDecayValueAssigner, create_optimizer
class BaseExperiment:
"""BaseExperiment Class
An experiment consistsn of the follwing key methods:
* run_experiment: Main Code for running the experiment with implemented coordinaten and training call
*
*
Args:
default_conf (dict): Default configuration
"""
def __init__(self, default_conf: dict, checkpoint=None) -> None:
# setup configuration
self.default_conf = default_conf
self.run_conf = None
self.logger = logging.getLogger(__name__)
# resolve_paths
self.default_conf["logging"]["log_dir"] = str(
Path(default_conf["logging"]["log_dir"]).resolve()
)
self.default_conf["logging"]["wandb_dir"] = str(
Path(default_conf["logging"]["wandb_dir"]).resolve()
)
if checkpoint is not None:
self.checkpoint = torch.load(checkpoint, map_location="cpu")
else:
self.checkpoint = None
# seeding
self.seed_run(seed=self.default_conf["random_seed"])
@abstractmethod
def run_experiment(self):
"""Experiment Code
Main Code for running the experiment. The following steps should be performed:
1.) Set run name
2.) Initialize WandB and update config (According to Sweep or predefined)
3.) Create Output directory and setup logger
4.) Machine Learning Setup
4.1) Loss functions
4.2) Model
4.3) Optimizer
4.4) Scheduler
5.) Load and Setup Dataset
6.) Define Trainer
7.) trainer.fit()
Raises:
NotImplementedError: Needs to be implemented
"""
raise NotImplementedError
@abstractmethod
def get_train_model(self) -> nn.Module:
"""Retrieve torch model for training
Raises:
NotImplementedError: Needs to be implemented
Returns:
nn.Module: Torch Model
"""
raise NotImplementedError
@abstractmethod
def get_loss_fn(self) -> _Loss:
"""Retrieve torch loss function for training
Raises:
NotImplementedError: Needs to be implemented
Returns:
_Loss: Loss function
"""
raise NotImplementedError
def get_argparser():
parser = argparse.ArgumentParser('ConvNeXt training and evaluation script for image classification', add_help=False)
# Optimization parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""")
parser.add_argument('--lr', type=float, default=4e-3, metavar='LR',
help='learning rate (default: 4e-3), with total batch size 4096')
parser.add_argument('--layer_decay', type=float, default=0.9999)
return parser
def get_optimizer(
self, model: nn.Module, opt: str, hp: dict, layer_decay:float,
) -> Optimizer:
"""Retrieve optimizer for training
All Torch Optimizers are possible
Args:
model (nn.Module): Training model
optimizer_name (str): Name of the optimizer, all current PyTorch Optimizer are possible
hp (dict): Hyperparameter as dictionary. For further information,
see documentation here: https://pytorch.org/docs/stable/optim.html#algorithms
Raises:
NotImplementedError: Raises error if an undefined Optimizer differing from torch is used
Returns:
Optimizer: PyTorch Optimizer
"""
# if optimizer_name not in OPTI_DICT:
# raise NotImplementedError("Optimizer not known")
if layer_decay < 1.0 or layer_decay > 1.0:
num_layers = 12 # convnext layers divided into 12 parts, each with a different decayed lr value.
assigner = LayerDecayValueAssigner(list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
else:
assigner = None
#optim = OPTI_DICT[optimizer_name]
# optimizer = optim(
# params=filter(lambda p: p.requires_grad, model.parameters()), **hp
# )
#optimizer = optim(params=model.parameters(), **hp)
optimizer = create_optimizer(
model, weight_decay=hp["weight_decay"], lr=hp["lr"], opt=opt, get_num_layer=assigner.get_layer_id, get_layer_scale=assigner.get_scale)
self.logger.info(
f"Loaded Optimizer with following hyperparameters:"
)
self.logger.info(hp)
return optimizer
def get_scheduler(self, optimizer: Optimizer) -> _LRScheduler:
"""Retrieve learning rate scheduler for training
Currently, just constant scheduler. Should be extended to add a configurable scheduler.
Maybe reimplement in specific experiment file.
Args:
optimizer (Optimizer): Optimizer
Returns:
_LRScheduler: PyTorch Scheduler
"""
scheduler = ConstantLR(optimizer, factor=1, total_iters=1000)
self.logger.info("Scheduler: ConstantLR scheduler")
return scheduler
def get_sampler(self) -> Sampler:
"""Retrieve data sampler for training
Raises:
NotImplementedError: Needs to be implemented
Returns:
Sampler: Training sampler
"""
raise NotImplementedError
def get_train_dataset(self) -> Dataset:
"""Retrieve training dataset
Raises:
NotImplementedError: Needs to be implemented
Returns:
Dataset: Training dataset
"""
raise NotImplementedError
def get_val_dataset(self) -> Dataset:
"""Retrieve validation dataset
Raises:
NotImplementedError: Needs to be implemented
Returns:
Dataset: Validation dataset
"""
raise NotImplementedError
def load_file_split(
self, fold: int = None
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Load the file split for training, validation and test
If no fold is provided, the current file split is loaded. Otherwise the files in the fold are loaded
The folder (filelist_path) must be built up in the following way:
1.) No-Multifold:
filelist_path:
train_split.csv
val_split.csv
test_split.csv
2.) Multifold:
filelist_path:
fold1:
train_split.csv
val_split.csv
test_split.csv
fold2:
train_split.csv
val_split.csv
test_split.csv
...
foldN:
train_split.csv
val_split.csv
test_split.csv
Args:
fold (int, optional): Fold. Defaults to None.
Raises:
NotImplementedError: Fold selection is currently not Implemented
Returns:
Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: Train, Val and Test split as Pandas Dataframe
"""
filelist_path = Path(self.default_conf["split_path"]).resolve()
self.logger.info(f"Loading filesplit from folder: {filelist_path}")
if fold is None:
train_split = pd.read_csv(filelist_path / "train_split.csv")
val_split = pd.read_csv(filelist_path / "val_split.csv")
test_split = pd.read_csv(filelist_path / "test_split.csv")
else:
train_split = pd.read_csv(filelist_path / f"fold{fold}" / "train_split.csv")
val_split = pd.read_csv(filelist_path / f"fold{fold}" / "val_split.csv")
test_split = None
self.logger.info(f"Train size: {len(train_split)}")
self.logger.info(f"Val-Split: {len(val_split)}")
return train_split, val_split, test_split
# Methods regarding logging and storing
def instantiate_logger(self) -> Logger:
"""Instantiate a logger
Returns:
Logger: Logger
"""
logger = Logger(
level=self.default_conf["logging"]["level"].upper(),
log_dir=Path(self.run_conf["logging"]["log_dir"]).resolve(),
comment="logs",
use_timestamp=False,
)
self.logger = logger.create_logger()
return self.logger
@staticmethod
def create_output_dir(folder_path: Union[str, Path]) -> None:
"""Create folder at given path
Args:
folder_path (Union[str, Path]): Folder that should be created
"""
folder_path = Path(folder_path).resolve()
folder_path.mkdir(parents=True, exist_ok=True)
def store_config(self) -> None:
"""Store the config file in the logging directory to keep track of the configuration."""
# store in log directory
with open(
(Path(self.run_conf["logging"]["log_dir"]) / "config.yaml").resolve(), "w"
) as yaml_file:
tmp_config = copy.deepcopy(self.run_conf)
tmp_config["logging"]["log_dir"] = str(tmp_config["logging"]["log_dir"])
yaml.dump(tmp_config, yaml_file, sort_keys=False)
self.logger.debug(
f"Stored config under: {(Path(self.run_conf['logging']['log_dir']) / 'config.yaml').resolve()}"
)
@staticmethod
def extract_sweep_arguments(config: dict) -> Tuple[Union[BaseModel, dict]]:
"""Extract sweep argument from the provided dictionary
The config dictionary must contain a "sweep" entry with the sweep configuration.
The file structure is documented here: ./base_ml/base_validator.py
We follow the official sweep guidlines of WandB
Example Sweep files are provided in the ./configs/examples folder
Args:
config (dict): Dictionary with all configurations
Raises:
KeyError: Missing Sweep Keys
Returns:
Tuple[Union[BaseModel, dict]]: Sweep arguments
"""
# validate sweep settings
if "sweep" not in config:
raise KeyError("No Sweep configuration provided")
sweep_schema.validate(config["sweep"])
sweep_conf = config["sweep"]
# load parameters
flattened_dict = flatten_dict(config, sep=".")
filtered_dict = {
k: v for k, v in flattened_dict.items() if "parameters" in k.split(".")
}
parameters = remove_parameter_tag(filtered_dict, sep=".")
sweep_conf["parameters"] = parameters
return sweep_conf
def overwrite_sweep_values(self, run_conf: dict, sweep_run_conf: dict) -> None:
"""Overwrite run_conf file with the sweep values
For the sweep, sweeping parameters are a flattened dict, with keys beeing specific with '.' separator.
These dictionary with the sweep hyperparameter selection needs to be unflattened (convert '.' into nested dict)
Afterward, keys are insertd in the run_conf dictionary
Args:
run_conf (dict): Current dictionary without sweep selected parameters
sweep_run_conf (dict): Dictionary with the sweep config
"""
flattened_run_conf = flatten_dict(run_conf, sep=".")
filtered_dict = {
k: v
for k, v in flattened_run_conf.items()
if "parameters" not in k.split(".")
}
run_parameters = {**filtered_dict, **sweep_run_conf}
run_parameters = unflatten_dict(run_parameters, ".")
self.run_conf = run_parameters
@staticmethod
def seed_run(seed: int) -> None:
"""Seed the experiment
Args:
seed (int): Seed
"""
# seeding
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
random.seed(seed)
from packaging.version import parse, Version
try:
import tensorflow as tf
except ImportError:
pass
else:
if parse(tf.__version__) >= Version("2.0.0"):
tf.random.set_seed(seed)
elif parse(tf.__version__) <= Version("1.13.2"):
tf.set_random_seed(seed)
else:
tf.compat.v1.set_random_seed(seed)
@staticmethod
def seed_worker(worker_id) -> None:
"""Seed a worker
Args:
worker_id (_type_): Worker ID
"""
worker_seed = torch.initial_seed() % 2**32
torch.manual_seed(worker_seed)
torch.cuda.manual_seed_all(worker_seed)
np.random.seed(worker_seed)
random.seed(worker_seed)
def close_remaining_logger(self) -> None:
"""Close all remaining loggers"""
logger = logging.getLogger("__main__")
for handler in logger.handlers:
logger.removeHandler(handler)
handler.close()
logger.handlers.clear()
logging.shutdown()