LKCell / base_ml /base_loss.py
xiazhi1
initial commit
aea73e2
raw
history blame
43.9 kB
# -*- coding: utf-8 -*-
# Loss functions (PyTorch and own defined)
#
# Own defined loss functions:
# xentropy_loss, dice_loss, mse_loss and msge_loss (https://github.com/vqdang/hover_net)
# WeightedBaseLoss, MAEWeighted, MSEWeighted, BCEWeighted, CEWeighted (https://github.com/okunator/cellseg_models.pytorch)
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import torch
import torch.nn.functional as F
from typing import List, Tuple
from torch import nn
from torch.nn.modules.loss import _Loss
from base_ml.base_utils import filter2D, gaussian_kernel2d
class XentropyLoss(_Loss):
"""Cross entropy loss"""
def __init__(self, reduction: str = "mean") -> None:
super().__init__(size_average=None, reduce=None, reduction=reduction)
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Assumes NCHW shape of array, must be torch.float32 dtype
Args:
input (torch.Tensor): Ground truth array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
target (torch.Tensor): Prediction array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
Returns:
torch.Tensor: Cross entropy loss, with shape () [scalar], grad_fn = MeanBackward0
"""
# reshape
input = input.permute(0, 2, 3, 1)
target = target.permute(0, 2, 3, 1)
epsilon = 10e-8
# scale preds so that the class probs of each sample sum to 1
pred = input / torch.sum(input, -1, keepdim=True)
# manual computation of crossentropy
pred = torch.clamp(pred, epsilon, 1.0 - epsilon)
loss = -torch.sum((target * torch.log(pred)), -1, keepdim=True)
loss = loss.mean() if self.reduction == "mean" else loss.sum()
return loss
class DiceLoss(_Loss):
"""Dice loss
Args:
smooth (float, optional): Smoothing value. Defaults to 1e-3.
"""
def __init__(self, smooth: float = 1e-3) -> None:
super().__init__(size_average=None, reduce=None, reduction="mean")
self.smooth = smooth
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Assumes NCHW shape of array, must be torch.float32 dtype
`pred` and `true` must be of torch.float32. Assuming of shape NxHxWxC.
Args:
input (torch.Tensor): Prediction array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
target (torch.Tensor): Ground truth array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
Returns:
torch.Tensor: Dice loss, with shape () [scalar], grad_fn=SumBackward0
"""
input = input.permute(0, 2, 3, 1)
target = target.permute(0, 2, 3, 1)
inse = torch.sum(input * target, (0, 1, 2))
l = torch.sum(input, (0, 1, 2))
r = torch.sum(target, (0, 1, 2))
loss = 1.0 - (2.0 * inse + self.smooth) / (l + r + self.smooth)
loss = torch.sum(loss)
return loss
class MSELossMaps(_Loss):
"""Calculate mean squared error loss for combined horizontal and vertical maps of segmentation tasks."""
def __init__(self) -> None:
super().__init__(size_average=None, reduce=None, reduction="mean")
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Loss calculation
Args:
input (torch.Tensor): Prediction of combined horizontal and vertical maps
with shape (N, 2, H, W), channel 0 is vertical and channel 1 is horizontal
target (torch.Tensor): Ground truth of combined horizontal and vertical maps
with shape (N, 2, H, W), channel 0 is vertical and channel 1 is horizontal
Returns:
torch.Tensor: Mean squared error per pixel with shape (N, 2, H, W), grad_fn=SubBackward0
"""
# reshape
loss = input - target
loss = (loss * loss).mean()
return loss
class MSGELossMaps(_Loss):
def __init__(self) -> None:
super().__init__(size_average=None, reduce=None, reduction="mean")
def get_sobel_kernel(
self, size: int, device: str
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get sobel kernel with a given size.
Args:
size (int): Kernel site
device (str): Cuda device
Returns:
Tuple[torch.Tensor, torch.Tensor]: Horizontal and vertical sobel kernel, each with shape (size, size)
"""
assert size % 2 == 1, "Must be odd, get size=%d" % size
h_range = torch.arange(
-size // 2 + 1,
size // 2 + 1,
dtype=torch.float32,
device=device,
requires_grad=False,
)
v_range = torch.arange(
-size // 2 + 1,
size // 2 + 1,
dtype=torch.float32,
device=device,
requires_grad=False,
)
h, v = torch.meshgrid(h_range, v_range, indexing="ij")
kernel_h = h / (h * h + v * v + 1.0e-15)
kernel_v = v / (h * h + v * v + 1.0e-15)
return kernel_h, kernel_v
def get_gradient_hv(self, hv: torch.Tensor, device: str) -> torch.Tensor:
"""For calculating gradient of horizontal and vertical prediction map
Args:
hv (torch.Tensor): horizontal and vertical map
device (str): CUDA device
Returns:
torch.Tensor: Gradient with same shape as input
"""
kernel_h, kernel_v = self.get_sobel_kernel(5, device=device)
kernel_h = kernel_h.view(1, 1, 5, 5) # constant
kernel_v = kernel_v.view(1, 1, 5, 5) # constant
h_ch = hv[..., 0].unsqueeze(1) # Nx1xHxW
v_ch = hv[..., 1].unsqueeze(1) # Nx1xHxW
# can only apply in NCHW mode
h_dh_ch = F.conv2d(h_ch, kernel_h, padding=2)
v_dv_ch = F.conv2d(v_ch, kernel_v, padding=2)
dhv = torch.cat([h_dh_ch, v_dv_ch], dim=1)
dhv = dhv.permute(0, 2, 3, 1).contiguous() # to NHWC
return dhv
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
focus: torch.Tensor,
device: str,
) -> torch.Tensor:
"""MSGE (Gradient of MSE) loss
Args:
input (torch.Tensor): Input with shape (B, C, H, W)
target (torch.Tensor): Target with shape (B, C, H, W)
focus (torch.Tensor): Focus, type of masking (B, C, W, W)
device (str): CUDA device to work with.
Returns:
torch.Tensor: MSGE loss
"""
input = input.permute(0, 2, 3, 1)
target = target.permute(0, 2, 3, 1)
focus = focus.permute(0, 2, 3, 1)
focus = focus[..., 1]
focus = (focus[..., None]).float() # assume input NHW
focus = torch.cat([focus, focus], axis=-1).to(device)
true_grad = self.get_gradient_hv(target, device)
pred_grad = self.get_gradient_hv(input, device)
loss = pred_grad - true_grad
loss = focus * (loss * loss)
# artificial reduce_mean with focused region
loss = loss.sum() / (focus.sum() + 1.0e-8)
return loss
class FocalTverskyLoss(nn.Module):
"""FocalTverskyLoss
PyTorch implementation of the Focal Tversky Loss Function for multiple classes
doi: 10.1109/ISBI.2019.8759329
Abraham, N., & Khan, N. M. (2019).
A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation.
In International Symposium on Biomedical Imaging. https://doi.org/10.1109/isbi.2019.8759329
@ Fabian Hörst, [email protected]
Institute for Artifical Intelligence in Medicine,
University Medicine Essen
Args:
alpha_t (float, optional): Alpha parameter for tversky loss (multiplied with false-negatives). Defaults to 0.7.
beta_t (float, optional): Beta parameter for tversky loss (multiplied with false-positives). Defaults to 0.3.
gamma_f (float, optional): Gamma Focal parameter. Defaults to 4/3.
smooth (float, optional): Smooting factor. Defaults to 0.000001.
"""
def __init__(
self,
alpha_t: float = 0.7,
beta_t: float = 0.3,
gamma_f: float = 4 / 3,
smooth: float = 1e-6,
) -> None:
super().__init__()
self.alpha_t = alpha_t
self.beta_t = beta_t
self.gamma_f = gamma_f
self.smooth = smooth
self.num_classes = 2
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Loss calculation
Args:
input (torch.Tensor): Predictions, logits (without Softmax). Shape: (B, C, H, W)
target (torch.Tensor): Targets, either flattened (Shape: (C, H, W) or as one-hot encoded (Shape: (batch-size, C, H, W)).
Raises:
ValueError: Error if there is a shape missmatch
Returns:
torch.Tensor: FocalTverskyLoss (weighted)
"""
input = input.permute(0, 2, 3, 1)
if input.shape[-1] != self.num_classes:
raise ValueError(
"Predictions must be a logit tensor with the last dimension shape beeing equal to the number of classes"
)
if len(target.shape) != len(input.shape):
# convert the targets to onehot
target = F.one_hot(target, num_classes=self.num_classes)
# flatten
target = target.permute(0, 2, 3, 1)
target = target.view(-1)
input = torch.softmax(input, dim=-1).view(-1)
# calculate true positives, false positives and false negatives
tp = (input * target).sum()
fp = ((1 - target) * input).sum()
fn = (target * (1 - input)).sum()
Tversky = (tp + self.smooth) / (
tp + self.alpha_t * fn + self.beta_t * fp + self.smooth
)
FocalTversky = (1 - Tversky) ** self.gamma_f
return FocalTversky
class MCFocalTverskyLoss(FocalTverskyLoss):
"""Multiclass FocalTverskyLoss
PyTorch implementation of the Focal Tversky Loss Function for multiple classes
doi: 10.1109/ISBI.2019.8759329
Abraham, N., & Khan, N. M. (2019).
A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation.
In International Symposium on Biomedical Imaging. https://doi.org/10.1109/isbi.2019.8759329
@ Fabian Hörst, [email protected]
Institute for Artifical Intelligence in Medicine,
University Medicine Essen
Args:
alpha_t (float, optional): Alpha parameter for tversky loss (multiplied with false-negatives). Defaults to 0.7.
beta_t (float, optional): Beta parameter for tversky loss (multiplied with false-positives). Defaults to 0.3.
gamma_f (float, optional): Gamma Focal parameter. Defaults to 4/3.
smooth (float, optional): Smooting factor. Defaults to 0.000001.
num_classes (int, optional): Number of output classes. For binary segmentation, prefer FocalTverskyLoss (speed optimized). Defaults to 2.
class_weights (List[int], optional): Weights for each class. If not provided, equal weight. Length must be equal to num_classes. Defaults to None.
"""
def __init__(
self,
alpha_t: float = 0.7,
beta_t: float = 0.3,
gamma_f: float = 4 / 3,
smooth: float = 0.000001,
num_classes: int = 2,
class_weights: List[int] = None,
) -> None:
super().__init__(alpha_t, beta_t, gamma_f, smooth)
self.num_classes = num_classes
if class_weights is None:
self.class_weights = [1 for i in range(self.num_classes)]
else:
assert (
len(class_weights) == self.num_classes
), "Please provide matching weights"
self.class_weights = class_weights
self.class_weights = torch.Tensor(self.class_weights)
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Loss calculation
Args:
input (torch.Tensor): Predictions, logits (without Softmax). Shape: (B, num_classes, H, W)
target (torch.Tensor): Targets, either flattened (Shape: (B, H, W) or as one-hot encoded (Shape: (B, num_classes, H, W)).
Raises:
ValueError: Error if there is a shape missmatch
Returns:
torch.Tensor: FocalTverskyLoss (weighted)
"""
input = input.permute(0, 2, 3, 1)
if input.shape[-1] != self.num_classes:
raise ValueError(
"Predictions must be a logit tensor with the last dimension shape beeing equal to the number of classes"
)
if len(target.shape) != len(input.shape):
# convert the targets to onehot
target = F.one_hot(target, num_classes=self.num_classes)
target = target.permute(0, 2, 3, 1)
# Softmax
input = torch.softmax(input, dim=-1)
# Reshape
input = torch.permute(input, (3, 1, 2, 0))
target = torch.permute(target, (3, 1, 2, 0))
input = torch.flatten(input, start_dim=1)
target = torch.flatten(target, start_dim=1)
tp = torch.sum(input * target, 1)
fp = torch.sum((1 - target) * input, 1)
fn = torch.sum(target * (1 - input), 1)
Tversky = (tp + self.smooth) / (
tp + self.alpha_t * fn + self.beta_t * fp + self.smooth
)
FocalTversky = (1 - Tversky) ** self.gamma_f
self.class_weights = self.class_weights.to(FocalTversky.device)
return torch.sum(self.class_weights * FocalTversky)
class WeightedBaseLoss(nn.Module):
"""Init a base class for weighted cross entropy based losses.
Enables weighting for object instance edges and classes.
Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
Args:
apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
loss matrix. Defaults to False.
apply_ls (bool, optional): If True, Label smoothing will be applied to the target.. Defaults to False.
apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
class_weights (torch.Tensor, optional): Class weights. A tensor of shape (C, ). Defaults to None.
edge_weight (float, optional): Weight for the object instance border pixels. Defaults to None.
"""
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
class_weights: torch.Tensor = None,
edge_weight: float = None,
**kwargs,
) -> None:
super().__init__()
self.apply_sd = apply_sd
self.apply_ls = apply_ls
self.apply_svls = apply_svls
self.apply_mask = apply_mask
self.class_weights = class_weights
self.edge_weight = edge_weight
def apply_spectral_decouple(
self, loss_matrix: torch.Tensor, yhat: torch.Tensor, lam: float = 0.01
) -> torch.Tensor:
"""Apply spectral decoupling L2 norm after the loss.
https://arxiv.org/abs/2011.09468
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
yhat (torch.Tensor): The pixel predictions of the model. Shape (B, C, H, W).
lam (float, optional): Lambda constant.. Defaults to 0.01.
Returns:
torch.Tensor: SD-regularized loss matrix. Same shape as input.
"""
return loss_matrix + (lam / 2) * (yhat**2).mean(axis=1)
def apply_ls_to_target(
self,
target: torch.Tensor,
num_classes: int,
label_smoothing: float = 0.1,
) -> torch.Tensor:
"""_summary_
Args:
target (torch.Tensor): Number of classes in the data.
num_classes (int): The target one hot tensor. Shape (B, C, H, W)
label_smoothing (float, optional): The smoothing coeff alpha. Defaults to 0.1.
Returns:
torch.Tensor: Label smoothed target. Same shape as input.
"""
return target * (1 - label_smoothing) + label_smoothing / num_classes
def apply_svls_to_target(
self,
target: torch.Tensor,
num_classes: int,
kernel_size: int = 5,
sigma: int = 3,
**kwargs,
) -> torch.Tensor:
"""Apply spatially varying label smoothihng to target map.
https://arxiv.org/abs/2104.05788
Args:
target (torch.Tensor): The target one hot tensor. Shape (B, C, H, W).
num_classes (int): Number of classes in the data.
kernel_size (int, optional): Size of a square kernel.. Defaults to 5.
sigma (int, optional): The std of the gaussian. Defaults to 3.
Returns:
torch.Tensor: Label smoothed target. Same shape as input.
"""
my, mx = kernel_size // 2, kernel_size // 2
gaussian_kernel = gaussian_kernel2d(
kernel_size, sigma, num_classes, device=target.device
)
neighborsum = (1 - gaussian_kernel[..., my, mx]) + 1e-16
gaussian_kernel = gaussian_kernel.clone()
gaussian_kernel[..., my, mx] = neighborsum
svls_kernel = gaussian_kernel / neighborsum[0]
return filter2D(target.float(), svls_kernel) / svls_kernel[0].sum()
def apply_class_weights(
self, loss_matrix: torch.Tensor, target: torch.Tensor
) -> torch.Tensor:
"""Multiply pixelwise loss matrix by the class weights.
NOTE: No normalization
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
target (torch.Tensor): The target mask. Shape (B, H, W).
Returns:
torch.Tensor: The loss matrix scaled with the weight matrix. Shape (B, H, W).
"""
weight_mat = self.class_weights[target.long()].to(target.device) # to (B, H, W)
loss = loss_matrix * weight_mat
return loss
def apply_edge_weights(
self, loss_matrix: torch.Tensor, weight_map: torch.Tensor
) -> torch.Tensor:
"""Apply weights to the object boundaries.
Basically just computes `edge_weight`**`weight_map`.
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
weight_map (torch.Tensor): Map that points to the pixels that will be weighted. Shape (B, H, W).
Returns:
torch.Tensor: The loss matrix scaled with the nuclear boundary weights. Shape (B, H, W).
"""
return loss_matrix * self.edge_weight**weight_map
def apply_mask_weight(
self, loss_matrix: torch.Tensor, mask: torch.Tensor, norm: bool = True
) -> torch.Tensor:
"""Apply a mask to the loss matrix.
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
mask (torch.Tensor): The mask. Shape (B, H, W).
norm (bool, optional): If True, the loss matrix will be normalized by the mean of the mask. Defaults to True.
Returns:
torch.Tensor: The loss matrix scaled with the mask. Shape (B, H, W).
"""
loss_matrix *= mask
if norm:
norm_mask = torch.mean(mask.float()) + 1e-7
loss_matrix /= norm_mask
return loss_matrix
def extra_repr(self) -> str:
"""Add info to print."""
s = "apply_sd={apply_sd}, apply_ls={apply_ls}, apply_svls={apply_svls}, apply_mask={apply_mask}, class_weights={class_weights}, edge_weight={edge_weight}" # noqa
return s.format(**self.__dict__)
class MAEWeighted(WeightedBaseLoss):
"""Compute the MAE loss. Used in the stardist method.
Stardist:
https://arxiv.org/pdf/1806.03535.pdf
Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
NOTE: We have added the option to apply spectral decoupling and edge weights
to the loss matrix.
Args:
alpha (float, optional): Weight regulizer b/w [0,1]. In stardist repo, this is the
'train_background_reg' parameter. Defaults to 1e-4.
apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
loss matrix. Defaults to False.
apply_mask (bool, optional): f True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
"""
def __init__(
self,
alpha: float = 1e-4,
apply_sd: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
**kwargs,
) -> None:
super().__init__(apply_sd, False, False, apply_mask, False, edge_weight)
self.alpha = alpha
self.eps = 1e-7
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute the masked MAE loss.
Args:
input (torch.Tensor): The prediction map. Shape (B, C, H, W).
target (torch.Tensor): The ground truth annotations. Shape (B, H, W).
target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
Raises:
ValueError: Pred and target shapes must match.
Returns:
torch.Tensor: Computed MAE loss (scalar).
"""
yhat = input
n_classes = yhat.shape[1]
if target.size() != yhat.size():
target = target.unsqueeze(1).repeat_interleave(n_classes, dim=1)
if not yhat.shape == target.shape:
raise ValueError(
f"Pred and target shapes must match. Got: {yhat.shape}, {target.shape}"
)
# compute the MAE loss with alpha as weight
mae_loss = torch.mean(torch.abs(target - yhat), axis=1) # (B, H, W)
if self.apply_mask and mask is not None:
mae_loss = self.apply_mask_weight(mae_loss, mask, norm=True) # (B, H, W)
# add the background regularization
if self.alpha > 0:
reg = torch.mean(((1 - mask).unsqueeze(1)) * torch.abs(yhat), axis=1)
mae_loss += self.alpha * reg
if self.apply_sd:
mae_loss = self.apply_spectral_decouple(mae_loss, yhat)
if self.edge_weight is not None:
mae_loss = self.apply_edge_weights(mae_loss, target_weight)
return mae_loss.mean()
class MSEWeighted(WeightedBaseLoss):
"""MSE-loss.
Args:
apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
loss matrix. Defaults to False.
apply_ls (bool, optional): If True, Label smoothing will be applied to the target. Defaults to False.
apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
class_weights (torch.Tensor, optional): Class weights. A tensor of shape (n_classes,). Defaults to None.
"""
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
class_weights: torch.Tensor = None,
**kwargs,
) -> None:
super().__init__(
apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
)
@staticmethod
def tensor_one_hot(type_map: torch.Tensor, n_classes: int) -> torch.Tensor:
"""Convert a segmentation mask into one-hot-format.
I.e. Takes in a segmentation mask of shape (B, H, W) and reshapes it
into a tensor of shape (B, C, H, W).
Args:
type_map (torch.Tensor): Multi-label Segmentation mask. Shape (B, H, W).
n_classes (int): Number of classes. (Zero-class included.)
Raises:
TypeError: Input `type_map` should have dtype: torch.int64.
Returns:
torch.Tensor: A one hot tensor. Shape: (B, C, H, W). Dtype: torch.FloatTensor.
"""
if not type_map.dtype == torch.int64:
raise TypeError(
f"""
Input `type_map` should have dtype: torch.int64. Got: {type_map.dtype}."""
)
one_hot = torch.zeros(
type_map.shape[0],
n_classes,
*type_map.shape[1:],
device=type_map.device,
dtype=type_map.dtype,
)
return one_hot.scatter_(dim=1, index=type_map.unsqueeze(1), value=1.0) + 1e-7
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute the MSE-loss.
Args:
input (torch.Tensor): The prediction map. Shape (B, C, H, W, C).
target (torch.Tensor): The ground truth annotations. Shape (B, H, W).
target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
Returns:
torch.Tensor: Computed MSE loss (scalar).
"""
yhat = input
target_one_hot = target
num_classes = yhat.shape[1]
if target.size() != yhat.size():
if target.dtype == torch.float32:
target_one_hot = target.unsqueeze(1)
else:
target_one_hot = MSEWeighted.tensor_one_hot(target, num_classes)
if self.apply_svls:
target_one_hot = self.apply_svls_to_target(
target_one_hot, num_classes, **kwargs
)
if self.apply_ls:
target_one_hot = self.apply_ls_to_target(
target_one_hot, num_classes, **kwargs
)
mse = F.mse_loss(yhat, target_one_hot, reduction="none") # (B, C, H, W)
mse = torch.mean(mse, dim=1) # to (B, H, W)
if self.apply_mask and mask is not None:
mse = self.apply_mask_weight(mse, mask, norm=False) # (B, H, W)
if self.apply_sd:
mse = self.apply_spectral_decouple(mse, yhat)
if self.class_weights is not None:
mse = self.apply_class_weights(mse, target)
if self.edge_weight is not None:
mse = self.apply_edge_weights(mse, target_weight)
return torch.mean(mse)
class BCEWeighted(WeightedBaseLoss):
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
class_weights: torch.Tensor = None,
**kwargs,
) -> None:
"""Binary cross entropy loss with weighting and other tricks.
Parameters
----------
apply_sd : bool, default=False
If True, Spectral decoupling regularization will be applied to the
loss matrix.
apply_ls : bool, default=False
If True, Label smoothing will be applied to the target.
apply_svls : bool, default=False
If True, spatially varying label smoothing will be applied to the target
apply_mask : bool, default=False
If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W)
edge_weight : float, default=None
Weight that is added to object borders.
class_weights : torch.Tensor, default=None
Class weights. A tensor of shape (n_classes,).
"""
super().__init__(
apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
)
self.eps = 1e-8
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute binary cross entropy loss.
Parameters
----------
yhat : torch.Tensor
The prediction map. Shape (B, C, H, W).
target : torch.Tensor
the ground truth annotations. Shape (B, H, W).
target_weight : torch.Tensor, default=None
The edge weight map. Shape (B, H, W).
mask : torch.Tensor, default=None
The mask map. Shape (B, H, W).
Returns
-------
torch.Tensor:
Computed BCE loss (scalar).
"""
# Logits input
yhat = input
num_classes = yhat.shape[1]
yhat = torch.clip(yhat, self.eps, 1.0 - self.eps)
if target.size() != yhat.size():
target = target.unsqueeze(1).repeat_interleave(num_classes, dim=1)
if self.apply_svls:
target = self.apply_svls_to_target(target, num_classes, **kwargs)
if self.apply_ls:
target = self.apply_ls_to_target(target, num_classes, **kwargs)
bce = F.binary_cross_entropy_with_logits(
yhat.float(), target.float(), reduction="none"
) # (B, C, H, W)
bce = torch.mean(bce, dim=1) # (B, H, W)
if self.apply_mask and mask is not None:
bce = self.apply_mask_weight(bce, mask, norm=False) # (B, H, W)
if self.apply_sd:
bce = self.apply_spectral_decouple(bce, yhat)
if self.class_weights is not None:
bce = self.apply_class_weights(bce, target)
if self.edge_weight is not None:
bce = self.apply_edge_weights(bce, target_weight)
return torch.mean(bce)
# class BCEWeighted(WeightedBaseLoss):
# """Binary cross entropy loss with weighting and other tricks.
# Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
# Args:
# apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
# loss matrix. Defaults to False.
# apply_ls (bool, optional): If True, Label smoothing will be applied to the target. Defaults to False.
# apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
# apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
# edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
# class_weights (torch.Tensor, optional): Class weights. A tensor of shape (n_classes,). Defaults to None.
# """
# def __init__(
# self,
# apply_sd: bool = False,
# apply_ls: bool = False,
# apply_svls: bool = False,
# apply_mask: bool = False,
# edge_weight: float = None,
# class_weights: torch.Tensor = None,
# **kwargs,
# ) -> None:
# super().__init__(
# apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
# )
# self.eps = 1e-8
# def forward(
# self,
# input: torch.Tensor,
# target: torch.Tensor,
# target_weight: torch.Tensor = None,
# mask: torch.Tensor = None,
# **kwargs,
# ) -> torch.Tensor:
# """Compute binary cross entropy loss.
# Args:
# input (torch.Tensor): The prediction map. We internally convert back via logit function. Shape (B, C, H, W).
# target (torch.Tensor): the ground truth annotations. Shape (B, H, W).
# target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
# mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
# Returns:
# torch.Tensor: Computed BCE loss (scalar).
# """
# yhat = input
# yhat = torch.special.logit(yhat)
# num_classes = yhat.shape[1]
# yhat = torch.clip(yhat, self.eps, 1.0 - self.eps)
# if target.size() != yhat.size():
# target = target.unsqueeze(1).repeat_interleave(num_classes, dim=1)
# if self.apply_svls:
# target = self.apply_svls_to_target(target, num_classes, **kwargs)
# if self.apply_ls:
# target = self.apply_ls_to_target(target, num_classes, **kwargs)
# bce = F.binary_cross_entropy_with_logits(
# yhat.float(), target.float(), reduction="none"
# ) # (B, C, H, W)
# bce = torch.mean(bce, dim=1) # (B, H, W)
# if self.apply_mask and mask is not None:
# bce = self.apply_mask_weight(bce, mask, norm=False) # (B, H, W)
# if self.apply_sd:
# bce = self.apply_spectral_decouple(bce, yhat)
# if self.class_weights is not None:
# bce = self.apply_class_weights(bce, target)
# if self.edge_weight is not None:
# bce = self.apply_edge_weights(bce, target_weight)
# return torch.mean(bce)
class CEWeighted(WeightedBaseLoss):
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
class_weights: torch.Tensor = None,
**kwargs,
) -> None:
"""Cross-Entropy loss with weighting.
Parameters
----------
apply_sd : bool, default=False
If True, Spectral decoupling regularization will be applied to the
loss matrix.
apply_ls : bool, default=False
If True, Label smoothing will be applied to the target.
apply_svls : bool, default=False
If True, spatially varying label smoothing will be applied to the target
apply_mask : bool, default=False
If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W)
edge_weight : float, default=None
Weight that is added to object borders.
class_weights : torch.Tensor, default=None
Class weights. A tensor of shape (n_classes,).
"""
super().__init__(
apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
)
self.eps = 1e-8
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute the cross entropy loss.
Parameters
----------
yhat : torch.Tensor
The prediction map. Shape (B, C, H, W).
target : torch.Tensor
the ground truth annotations. Shape (B, H, W).
target_weight : torch.Tensor, default=None
The edge weight map. Shape (B, H, W).
mask : torch.Tensor, default=None
The mask map. Shape (B, H, W).
Returns
-------
torch.Tensor:
Computed CE loss (scalar).
"""
yhat = input # TODO: remove doubled Softmax -> this function needs logits instead of softmax output
input_soft = F.softmax(yhat, dim=1) + self.eps # (B, C, H, W)
num_classes = yhat.shape[1]
if len(target.shape) != len(yhat.shape) and target.shape[1] != num_classes:
target_one_hot = MSEWeighted.tensor_one_hot(
target, num_classes
) # (B, C, H, W)
else:
target_one_hot = target
target = torch.argmax(target, dim=1)
assert target_one_hot.shape == yhat.shape
if self.apply_svls:
target_one_hot = self.apply_svls_to_target(
target_one_hot, num_classes, **kwargs
)
if self.apply_ls:
target_one_hot = self.apply_ls_to_target(
target_one_hot, num_classes, **kwargs
)
loss = -torch.sum(target_one_hot * torch.log(input_soft), dim=1) # (B, H, W)
if self.apply_mask and mask is not None:
loss = self.apply_mask_weight(loss, mask, norm=False) # (B, H, W)
if self.apply_sd:
loss = self.apply_spectral_decouple(loss, yhat)
if self.class_weights is not None:
loss = self.apply_class_weights(loss, target)
if self.edge_weight is not None:
loss = self.apply_edge_weights(loss, target_weight)
return loss.mean()
# class CEWeighted(WeightedBaseLoss):
# """Cross-Entropy loss with weighting.
# Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
# Args:
# apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the loss matrix. Defaults to False.
# apply_ls (bool, optional): If True, Label smoothing will be applied to the target. Defaults to False.
# apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
# apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
# edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
# class_weights (torch.Tensor, optional): Class weights. A tensor of shape (n_classes,). Defaults to None.
# logits (bool, optional): If work on logit values. Defaults to False. Defaults to False.
# """
# def __init__(
# self,
# apply_sd: bool = False,
# apply_ls: bool = False,
# apply_svls: bool = False,
# apply_mask: bool = False,
# edge_weight: float = None,
# class_weights: torch.Tensor = None,
# logits: bool = False,
# **kwargs,
# ) -> None:
# super().__init__(
# apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
# )
# self.eps = 1e-8
# self.logits = logits
# def forward(
# self,
# input: torch.Tensor,
# target: torch.Tensor,
# target_weight: torch.Tensor = None,
# mask: torch.Tensor = None,
# **kwargs,
# ) -> torch.Tensor:
# """Compute the cross entropy loss.
# Args:
# input (torch.Tensor): The prediction map. Shape (B, C, H, W).
# target (torch.Tensor): The ground truth annotations. Shape (B, H, W).
# target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
# mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
# Returns:
# torch.Tensor: Computed CE loss (scalar).
# """
# yhat = input
# if self.logits:
# input_soft = (
# F.softmax(yhat, dim=1) + self.eps
# ) # (B, C, H, W) # check if doubled softmax
# else:
# input_soft = input
# num_classes = yhat.shape[1]
# if len(target.shape) != len(yhat.shape) and target.shape[1] != num_classes:
# target_one_hot = MSEWeighted.tensor_one_hot(
# target, num_classes
# ) # (B, C, H, W)
# else:
# target_one_hot = target
# target = torch.argmax(target, dim=1)
# assert target_one_hot.shape == yhat.shape
# if self.apply_svls:
# target_one_hot = self.apply_svls_to_target(
# target_one_hot, num_classes, **kwargs
# )
# if self.apply_ls:
# target_one_hot = self.apply_ls_to_target(
# target_one_hot, num_classes, **kwargs
# )
# loss = -torch.sum(target_one_hot * torch.log(input_soft), dim=1) # (B, H, W)
# if self.apply_mask and mask is not None:
# loss = self.apply_mask_weight(loss, mask, norm=False) # (B, H, W)
# if self.apply_sd:
# loss = self.apply_spectral_decouple(loss, yhat)
# if self.class_weights is not None:
# loss = self.apply_class_weights(loss, target)
# if self.edge_weight is not None:
# loss = self.apply_edge_weights(loss, target_weight)
# return loss.mean()
### Stardist loss functions
class L1LossWeighted(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
) -> torch.Tensor:
l1loss = F.l1_loss(input, target, size_average=True, reduce=False)
l1loss = torch.mean(l1loss, dim=1)
if target_weight is not None:
l1loss = torch.mean(target_weight * l1loss)
else:
l1loss = torch.mean(l1loss)
return l1loss
def retrieve_loss_fn(loss_name: dict, **kwargs) -> _Loss:
"""Return the loss function with given name defined in the LOSS_DICT and initialize with kwargs
kwargs must match with the parameters defined in the initialization method of the selected loss object
Args:
loss_name (dict): Name of the loss function
Returns:
_Loss: Loss
"""
loss_fn = LOSS_DICT[loss_name]
loss_fn = loss_fn(**kwargs)
return loss_fn
LOSS_DICT = {
"xentropy_loss": XentropyLoss,
"dice_loss": DiceLoss,
"mse_loss_maps": MSELossMaps,
"msge_loss_maps": MSGELossMaps,
"FocalTverskyLoss": FocalTverskyLoss,
"MCFocalTverskyLoss": MCFocalTverskyLoss,
"CrossEntropyLoss": nn.CrossEntropyLoss, # input logits, targets
"L1Loss": nn.L1Loss,
"MSELoss": nn.MSELoss,
"CTCLoss": nn.CTCLoss, # probability
"NLLLoss": nn.NLLLoss, # log-probabilities of each class
"PoissonNLLLoss": nn.PoissonNLLLoss,
"GaussianNLLLoss": nn.GaussianNLLLoss,
"KLDivLoss": nn.KLDivLoss, # argument input in log-space
"BCELoss": nn.BCELoss, # probabilities
"BCEWithLogitsLoss": nn.BCEWithLogitsLoss, # logits
"MarginRankingLoss": nn.MarginRankingLoss,
"HingeEmbeddingLoss": nn.HingeEmbeddingLoss,
"MultiLabelMarginLoss": nn.MultiLabelMarginLoss,
"HuberLoss": nn.HuberLoss,
"SmoothL1Loss": nn.SmoothL1Loss,
"SoftMarginLoss": nn.SoftMarginLoss, # logits
"MultiLabelSoftMarginLoss": nn.MultiLabelSoftMarginLoss,
"CosineEmbeddingLoss": nn.CosineEmbeddingLoss,
"MultiMarginLoss": nn.MultiMarginLoss,
"TripletMarginLoss": nn.TripletMarginLoss,
"TripletMarginWithDistanceLoss": nn.TripletMarginWithDistanceLoss,
"MAEWeighted": MAEWeighted,
"MSEWeighted": MSEWeighted,
"BCEWeighted": BCEWeighted, # logits
"CEWeighted": CEWeighted, # logits
"L1LossWeighted": L1LossWeighted,
}