|
import tensorflow as tf |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
def tf_box_filter(x, r): |
|
k_size = int(2*r+1) |
|
ch = x.get_shape().as_list()[-1] |
|
weight = 1/(k_size**2) |
|
box_kernel = weight*np.ones((k_size, k_size, ch, 1)) |
|
box_kernel = np.array(box_kernel).astype(np.float32) |
|
output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME') |
|
return output |
|
|
|
|
|
|
|
def guided_filter(x, y, r, eps=1e-2): |
|
|
|
x_shape = tf.shape(x) |
|
|
|
|
|
N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r) |
|
|
|
mean_x = tf_box_filter(x, r) / N |
|
mean_y = tf_box_filter(y, r) / N |
|
cov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_y |
|
var_x = tf_box_filter(x * x, r) / N - mean_x * mean_x |
|
|
|
A = cov_xy / (var_x + eps) |
|
b = mean_y - A * mean_x |
|
|
|
mean_A = tf_box_filter(A, r) / N |
|
mean_b = tf_box_filter(b, r) / N |
|
|
|
output = mean_A * x + mean_b |
|
|
|
return output |
|
|
|
|
|
|
|
def fast_guided_filter(lr_x, lr_y, hr_x, r=1, eps=1e-8): |
|
|
|
|
|
|
|
lr_x_shape = tf.shape(lr_x) |
|
|
|
hr_x_shape = tf.shape(hr_x) |
|
|
|
N = tf_box_filter(tf.ones((1, lr_x_shape[1], lr_x_shape[2], 1), dtype=lr_x.dtype), r) |
|
|
|
mean_x = tf_box_filter(lr_x, r) / N |
|
mean_y = tf_box_filter(lr_y, r) / N |
|
cov_xy = tf_box_filter(lr_x * lr_y, r) / N - mean_x * mean_y |
|
var_x = tf_box_filter(lr_x * lr_x, r) / N - mean_x * mean_x |
|
|
|
A = cov_xy / (var_x + eps) |
|
b = mean_y - A * mean_x |
|
|
|
mean_A = tf.image.resize_images(A, hr_x_shape[1: 3]) |
|
mean_b = tf.image.resize_images(b, hr_x_shape[1: 3]) |
|
|
|
output = mean_A * hr_x + mean_b |
|
|
|
return output |
|
|
|
|
|
if __name__ == '__main__': |
|
import cv2 |
|
from tqdm import tqdm |
|
|
|
input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) |
|
|
|
output = guided_filter(input_photo, input_photo, 5, eps=1) |
|
image = cv2.imread('output_figure1/cartoon2.jpg') |
|
image = image/127.5 - 1 |
|
image = np.expand_dims(image, axis=0) |
|
|
|
config = tf.ConfigProto() |
|
config.gpu_options.allow_growth = True |
|
sess = tf.Session(config=config) |
|
sess.run(tf.global_variables_initializer()) |
|
|
|
out = sess.run(output, feed_dict={input_photo: image}) |
|
out = (np.squeeze(out)+1)*127.5 |
|
out = np.clip(out, 0, 255).astype(np.uint8) |
|
cv2.imwrite('output_figure1/cartoon2_filter.jpg', out) |
|
|