|
import os, sys |
|
import random |
|
import warnings |
|
import copy |
|
os.system("python -m pip install -e asam") |
|
os.system("python -m pip install -e GroundingDINO") |
|
|
|
os.system("python -m pip install gradio==3.38.0") |
|
os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel") |
|
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) |
|
sys.path.append(os.path.join(os.getcwd(), "asam")) |
|
warnings.filterwarnings("ignore") |
|
|
|
import gradio as gr |
|
import argparse |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from PIL import Image, ImageDraw, ImageFont |
|
from scipy import ndimage |
|
|
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
|
|
from segment_anything import build_sam_vit_b, SamPredictor |
|
import numpy as np |
|
|
|
|
|
|
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
|
|
def generate_caption(processor, blip_model, raw_image): |
|
|
|
inputs = processor(raw_image, return_tensors="pt").to( |
|
device) |
|
out = blip_model.generate(**inputs) |
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
return caption |
|
|
|
|
|
def transform_image(image_pil): |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image |
|
|
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict( |
|
clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
|
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
scores = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap( |
|
logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append( |
|
pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
scores.append(logit.max().item()) |
|
|
|
return boxes_filt, torch.Tensor(scores), pred_phrases |
|
|
|
|
|
def draw_mask(mask, draw, random_color=False): |
|
if random_color: |
|
color = (random.randint(0, 255), random.randint( |
|
0, 255), random.randint(0, 255), 153) |
|
else: |
|
color = (30, 144, 255, 153) |
|
|
|
nonzero_coords = np.transpose(np.nonzero(mask)) |
|
|
|
for coord in nonzero_coords: |
|
draw.point(coord[::-1], fill=color) |
|
|
|
|
|
def draw_box(box, draw, label): |
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
|
|
draw.rectangle(((box[0], box[1]), (box[2], box[3])), |
|
outline=color, width=2) |
|
|
|
if label: |
|
font = ImageFont.load_default() |
|
if hasattr(font, "getbbox"): |
|
bbox = draw.textbbox((box[0], box[1]), str(label), font) |
|
else: |
|
w, h = draw.textsize(str(label), font) |
|
bbox = (box[0], box[1], w + box[0], box[1] + h) |
|
draw.rectangle(bbox, fill=color) |
|
draw.text((box[0], box[1]), str(label), fill="white") |
|
|
|
draw.text((box[0], box[1]), label) |
|
|
|
def draw_point(point, draw, r=10): |
|
show_point = [] |
|
for p in point: |
|
x,y = p |
|
draw.ellipse((x-r, y-r, x+r, y+r), fill='green') |
|
|
|
|
|
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' |
|
ckpt_filenmae = "groundingdino_swint_ogc.pth" |
|
sam_checkpoint = 'sam_vit_b_01ec64.pth' |
|
asam_checkpoint = 'asam_vit_b.pth' |
|
output_dir = "outputs" |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
blip_processor = None |
|
blip_model = None |
|
groundingdino_model = None |
|
sam_predictor = None |
|
|
|
|
|
def run_grounded_sam(input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold): |
|
print(text_prompt, type(text_prompt)) |
|
global blip_processor, blip_model, groundingdino_model, sam_predictor |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
scribble = np.array(input_image["mask"]) |
|
image_pil = input_image["image"].convert("RGB") |
|
transformed_image = transform_image(image_pil) |
|
print('img sum:' ,torch.sum(transformed_image).to(torch.int).item()) |
|
|
|
if groundingdino_model is None: |
|
groundingdino_model = load_model( |
|
config_file, ckpt_filenmae, device=device) |
|
|
|
if task_type == 'automatic': |
|
|
|
|
|
|
|
|
|
blip_processor = blip_processor or BlipProcessor.from_pretrained( |
|
"Salesforce/blip-image-captioning-large") |
|
blip_model = blip_model or BlipForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip-image-captioning-large").to(device) |
|
text_prompt = generate_caption(blip_processor, blip_model, image_pil) |
|
print(f"Caption: {text_prompt}") |
|
|
|
|
|
boxes_filt, scores, pred_phrases = get_grounding_output( |
|
groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold |
|
) |
|
|
|
size = image_pil.size |
|
|
|
|
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
|
|
|
|
print(f"Before NMS: {boxes_filt.shape[0]} boxes") |
|
nms_idx = torchvision.ops.nms( |
|
boxes_filt, scores, iou_threshold).numpy().tolist() |
|
boxes_filt = boxes_filt[nms_idx] |
|
pred_phrases = [pred_phrases[idx] for idx in nms_idx] |
|
print(f"After NMS: {boxes_filt.shape[0]} boxes") |
|
|
|
if sam_predictor is None: |
|
|
|
assert sam_checkpoint, 'sam_checkpoint is not found!' |
|
sam = build_sam_vit_b(checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
sam_predictor = SamPredictor(sam) |
|
|
|
image = np.array(image_pil) |
|
sam_predictor.set_image(image) |
|
|
|
if task_type == 'automatic': |
|
|
|
print(f"Revise caption with number: {text_prompt}") |
|
|
|
if task_type == 'default_box' or task_type == 'automatic' or task_type == 'scribble_box': |
|
if task_type == 'default_box': |
|
id = torch.sum(transformed_image).to(torch.int).item() |
|
if id == -1683627: |
|
x_min, y_min, x_max, y_max = 204, 213, 813, 1023 |
|
elif id == 1137390: |
|
x_min, y_min, x_max, y_max = 125, 168, 842, 904 |
|
elif id == 1145309: |
|
x_min, y_min, x_max, y_max = 0, 486, 992, 899 |
|
elif id == 1091779: |
|
x_min, y_min, x_max, y_max = 2, 73, 981, 968 |
|
elif id == -1335352: |
|
x_min, y_min, x_max, y_max = 201, 195, 811, 1023 |
|
elif id == -1479645: |
|
x_min, y_min, x_max, y_max = 428, 0, 992, 799 |
|
elif id == -544197: |
|
x_min, y_min, x_max, y_max = 106, 419, 312, 783 |
|
elif id == -23873: |
|
x_min, y_min, x_max, y_max = 250, 25, 774, 803 |
|
elif id == -1572157: |
|
x_min, y_min, x_max, y_max = 15, 88, 1006, 977 |
|
elif id == -509470: |
|
x_min, y_min, x_max, y_max = 190, 0, 530, 395 |
|
elif id == -42440: |
|
x_min, y_min, x_max, y_max = 282, 134, 534, 394 |
|
else: |
|
print(id, "not defined") |
|
raise NotImplementedError |
|
bbox = np.array([x_min, y_min, x_max, y_max]) |
|
bbox = torch.tensor(bbox).unsqueeze(0) |
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(bbox, image.shape[:2]).to(device) |
|
elif task_type == 'scribble_box': |
|
scribble = scribble.transpose(2, 1, 0)[0] |
|
labeled_array, num_features = ndimage.label(scribble >= 255) |
|
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) |
|
centers = np.array(centers) |
|
|
|
x_min = centers[:, 0].min() |
|
x_max = centers[:, 0].max() |
|
y_min = centers[:, 1].min() |
|
y_max = centers[:, 1].max() |
|
bbox = np.array([x_min, y_min, x_max, y_max]) |
|
bbox = torch.tensor(bbox).unsqueeze(0) |
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(bbox, image.shape[:2]).to(device) |
|
else: |
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch( |
|
boxes_filt, image.shape[:2]).to(device) |
|
|
|
|
|
a_image_pil = copy.deepcopy(image_pil) |
|
|
|
sam_predictor.model.load_state_dict(torch.load(sam_checkpoint,map_location='cpu')) |
|
masks, _, _ = sam_predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes, |
|
multimask_output=False, |
|
) |
|
print(torch.sum(masks), masks.device) |
|
|
|
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) |
|
mask_draw = ImageDraw.Draw(mask_image) |
|
for mask in masks: |
|
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True) |
|
image_draw = ImageDraw.Draw(image_pil) |
|
|
|
if task_type == 'scribble_box' or task_type == 'default_box': |
|
for box in bbox: |
|
draw_box(box, image_draw, None) |
|
else: |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
draw_box(box, image_draw, label) |
|
|
|
if task_type == 'automatic': |
|
image_draw.text((10, 10), text_prompt, fill='black') |
|
|
|
image_pil = image_pil.convert('RGBA') |
|
image_pil.alpha_composite(mask_image) |
|
|
|
|
|
|
|
total_weights = 0 |
|
for param in sam_predictor.model.parameters(): |
|
total_weights += param.data.sum() |
|
|
|
print("Total sum of model weights:", total_weights.item()) |
|
|
|
sam_predictor.model.load_state_dict(torch.load(asam_checkpoint,map_location='cpu')) |
|
|
|
total_weights = 0 |
|
for param in sam_predictor.model.parameters(): |
|
total_weights += param.data.sum() |
|
|
|
print("Total sum of model weights:", total_weights.item()) |
|
|
|
a_masks, _, _ = sam_predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes, |
|
multimask_output=False, |
|
) |
|
print(torch.sum(a_masks)) |
|
|
|
|
|
a_mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) |
|
a_mask_draw = ImageDraw.Draw(a_mask_image) |
|
for a_mask in a_masks: |
|
draw_mask(a_mask[0].cpu().numpy(), a_mask_draw, random_color=True) |
|
a_image_draw = ImageDraw.Draw(a_image_pil) |
|
|
|
if task_type == 'scribble_box' or task_type == 'default_box': |
|
for box in bbox: |
|
draw_box(box, a_image_draw, None) |
|
else: |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
draw_box(box, a_image_draw, label) |
|
|
|
if task_type == 'automatic': |
|
a_image_draw.text((10, 10), text_prompt, fill='black') |
|
|
|
a_image_pil = a_image_pil.convert('RGBA') |
|
a_image_pil.alpha_composite(a_mask_image) |
|
|
|
return [[image_pil, mask_image],[a_image_pil, a_mask_image]] |
|
|
|
elif task_type == 'scribble_point': |
|
|
|
scribble = scribble.transpose(2, 1, 0)[0] |
|
labeled_array, num_features = ndimage.label(scribble >= 255) |
|
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) |
|
centers = np.array(centers) |
|
point_coords = centers |
|
point_labels = np.ones(point_coords.shape[0]) |
|
|
|
a_image_pil = copy.deepcopy(image_pil) |
|
|
|
|
|
sam_predictor.model.load_state_dict(torch.load(sam_checkpoint,map_location='cpu')) |
|
masks, _, _ = sam_predictor.predict( |
|
point_coords=point_coords, |
|
point_labels=point_labels, |
|
box=None, |
|
multimask_output=False, |
|
) |
|
|
|
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) |
|
mask_draw = ImageDraw.Draw(mask_image) |
|
for mask in masks: |
|
draw_mask(mask, mask_draw, random_color=True) |
|
image_draw = ImageDraw.Draw(image_pil) |
|
|
|
draw_point(point_coords,image_draw) |
|
|
|
image_pil = image_pil.convert('RGBA') |
|
image_pil.alpha_composite(mask_image) |
|
|
|
|
|
|
|
sam_predictor.model.load_state_dict(torch.load(asam_checkpoint,map_location='cpu')) |
|
a_masks, _, _ = sam_predictor.predict( |
|
point_coords=point_coords, |
|
point_labels=point_labels, |
|
box=None, |
|
multimask_output=False, |
|
) |
|
|
|
a_mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) |
|
a_mask_draw = ImageDraw.Draw(a_mask_image) |
|
for a_mask in a_masks: |
|
draw_mask(a_mask, a_mask_draw, random_color=True) |
|
|
|
a_image_draw = ImageDraw.Draw(a_image_pil) |
|
draw_point(point_coords,a_image_draw) |
|
|
|
a_image_pil = a_image_pil.convert('RGBA') |
|
a_image_pil.alpha_composite(a_mask_image) |
|
|
|
return [[image_pil, mask_image],[a_image_pil, a_mask_image]] |
|
|
|
else: |
|
print("task_type:{} error!".format(task_type)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) |
|
parser.add_argument("--debug", action="store_true", |
|
help="using debug mode") |
|
parser.add_argument("--share", action="store_true", help="share the app") |
|
parser.add_argument('--no-gradio-queue', action="store_true", |
|
help='path to the SAM checkpoint') |
|
args = parser.parse_args() |
|
|
|
print(args) |
|
|
|
block = gr.Blocks() |
|
if not args.no_gradio_queue: |
|
block = block.queue() |
|
|
|
with block: |
|
gr.Markdown( |
|
""" |
|
# ASAM |
|
|
|
Welcome to the ASAM demo <br/> |
|
You may select different prompt types to get the output mask of target instance. |
|
|
|
## Usage |
|
You may check the instruction below, or check our github page about more details. |
|
|
|
## Mode |
|
You may select an example image or upload your image to start, we support 4 prompt types: |
|
|
|
**default_box**: According to the mask label, automaticly generate the default box prompt, only used for examples. |
|
|
|
**automatic**: Automaticly generate text prompt and the corresponding box input with BLIP and Grounding-DINO. |
|
|
|
**scribble_point**: Click an point on the target instance. |
|
|
|
**scribble_box**: Click on two points, the top-left point and the bottom-right point to represent a bounding box of the target instance. |
|
|
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image( |
|
source='upload', type="pil", value="example9.jpg", tool="sketch",brush_radius=20) |
|
task_type = gr.Dropdown( |
|
["default_box","automatic", "scribble_point", "scribble_box"], value="default_box", label="task_type") |
|
text_prompt = gr.Textbox(label="Text Prompt", placeholder="bench .", visible=False) |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.001 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001 |
|
) |
|
|
|
with gr.Column(): |
|
with gr.Row(equal_height=True): |
|
gr.Image(source='upload', value="meta&sam.png",tool="label", show_download_button=False, min_width=0, height=50, width=100,container=False, style="width: 0.5px; height: 0.5px; margin-right: 0px;") |
|
|
|
|
|
|
|
|
|
|
|
gallery1 = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery" |
|
).style(preview=True, grid=2, object_fit="scale-down") |
|
|
|
with gr.Row(equal_height=True): |
|
gr.Image(source='upload', value="vivo&asam.png",tool="label", show_download_button=False, min_width=0, height=50, width=100,container=False, style="width: 0.5px; height: 0.5px; margin-right: 0px;") |
|
|
|
|
|
|
|
|
|
gallery2 = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery" |
|
).style(preview=True, grid=2, object_fit="scale-down") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Examples(["example1.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example2.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example3.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example4.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example5.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example6.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example7.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example8.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example9.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example10.jpg"], inputs=input_image) |
|
with gr.Column(): |
|
gr.Examples(["example11.jpg"], inputs=input_image) |
|
run_button.click(fn=run_grounded_sam, inputs=[ |
|
input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold], outputs=[gallery1,gallery2]) |
|
|
|
block.launch(debug=args.debug, share=args.share, show_error=True) |
|
|