Spaces:
Runtime error
Runtime error
first commit
Browse files- app.py +236 -0
- requirements.txt +17 -0
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from chromadb.config import Settings
|
3 |
+
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
import os
|
9 |
+
import requests
|
10 |
+
from fastapi import FastAPI, UploadFile, File
|
11 |
+
from typing import List, Optional
|
12 |
+
import urllib.parse
|
13 |
+
from langchain.llms import HuggingFacePipeline
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
+
import transformers
|
16 |
+
from torch import cuda, bfloat16
|
17 |
+
import gradio as gr
|
18 |
+
import gc
|
19 |
+
import torch
|
20 |
+
|
21 |
+
|
22 |
+
persist_directory = "db"
|
23 |
+
source_directory = 'source_documents'
|
24 |
+
embeddings_model_name = "all-MiniLM-L6-v2"
|
25 |
+
model = "tiiuae/falcon-7b-instruct"
|
26 |
+
chunk_size = 500
|
27 |
+
chunk_overlap = 50
|
28 |
+
target_source_chunks = 4
|
29 |
+
# Define the folder for storing database
|
30 |
+
persist_directory = 'db'
|
31 |
+
|
32 |
+
|
33 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
34 |
+
llm = HuggingFacePipeline.from_model_id(model_id=model, task="text-generation", device=0, model_kwargs={"temperature":0.1,"trust_remote_code": True, "max_length":100000, "top_p":0.15, "top_k":0, "repetition_penalty":1.1, "num_return_sequences":1, "torch_dtype":bfloat16})
|
35 |
+
|
36 |
+
|
37 |
+
# Define the Chroma settings
|
38 |
+
CHROMA_SETTINGS = Settings(
|
39 |
+
chroma_db_impl='duckdb+parquet',
|
40 |
+
persist_directory=persist_directory,
|
41 |
+
anonymized_telemetry=False
|
42 |
+
)
|
43 |
+
|
44 |
+
import os
|
45 |
+
import glob
|
46 |
+
from typing import List
|
47 |
+
import argparse
|
48 |
+
|
49 |
+
from langchain.document_loaders import (
|
50 |
+
CSVLoader,
|
51 |
+
EverNoteLoader,
|
52 |
+
PDFMinerLoader,
|
53 |
+
TextLoader,
|
54 |
+
UnstructuredEmailLoader,
|
55 |
+
UnstructuredEPubLoader,
|
56 |
+
UnstructuredHTMLLoader,
|
57 |
+
UnstructuredMarkdownLoader,
|
58 |
+
UnstructuredODTLoader,
|
59 |
+
UnstructuredPowerPointLoader,
|
60 |
+
UnstructuredWordDocumentLoader,
|
61 |
+
)
|
62 |
+
|
63 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
64 |
+
from langchain.vectorstores import Chroma
|
65 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
66 |
+
from langchain.docstore.document import Document
|
67 |
+
# from constants import CHROMA_SETTINGS
|
68 |
+
# from PyPDF2 import PdfReader
|
69 |
+
import requests
|
70 |
+
|
71 |
+
# Map file extensions to document loaders and their arguments
|
72 |
+
LOADER_MAPPING = {
|
73 |
+
".csv": (CSVLoader, {}),
|
74 |
+
# ".docx": (Docx2txtLoader, {}),
|
75 |
+
".doc": (UnstructuredWordDocumentLoader, {}),
|
76 |
+
".docx": (UnstructuredWordDocumentLoader, {}),
|
77 |
+
".enex": (EverNoteLoader, {}),
|
78 |
+
# ".eml": (MyElmLoader, {}),
|
79 |
+
".epub": (UnstructuredEPubLoader, {}),
|
80 |
+
".html": (UnstructuredHTMLLoader, {}),
|
81 |
+
".md": (UnstructuredMarkdownLoader, {}),
|
82 |
+
".odt": (UnstructuredODTLoader, {}),
|
83 |
+
".pdf": (PDFMinerLoader, {}),
|
84 |
+
".ppt": (UnstructuredPowerPointLoader, {}),
|
85 |
+
".pptx": (UnstructuredPowerPointLoader, {}),
|
86 |
+
".txt": (TextLoader, {"encoding": "cp1252"}),
|
87 |
+
# Add more mappings for other file extensions and loaders as needed
|
88 |
+
}
|
89 |
+
|
90 |
+
|
91 |
+
def load_single_document(file_path: str) -> List[Document]:
|
92 |
+
ext = "." + file_path.rsplit(".", 1)[-1]
|
93 |
+
if ext in LOADER_MAPPING:
|
94 |
+
loader_class, loader_args = LOADER_MAPPING[ext]
|
95 |
+
loader = loader_class(file_path, **loader_args)
|
96 |
+
return loader.load()
|
97 |
+
|
98 |
+
raise ValueError(f"Unsupported file extension '{ext}'")
|
99 |
+
|
100 |
+
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
101 |
+
"""
|
102 |
+
Loads all documents from the source documents directory, ignoring specified files
|
103 |
+
"""
|
104 |
+
all_files = []
|
105 |
+
for ext in LOADER_MAPPING:
|
106 |
+
all_files.extend(
|
107 |
+
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
|
108 |
+
)
|
109 |
+
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
|
110 |
+
|
111 |
+
with Pool(processes=os.cpu_count()) as pool:
|
112 |
+
results = []
|
113 |
+
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
114 |
+
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
|
115 |
+
results.extend(docs)
|
116 |
+
pbar.update()
|
117 |
+
|
118 |
+
return results
|
119 |
+
|
120 |
+
def process_documents(ignored_files: List[str] = []) -> List[Document]:
|
121 |
+
"""
|
122 |
+
Load documents and split in chunks
|
123 |
+
"""
|
124 |
+
print(f"Loading documents from {source_directory}")
|
125 |
+
documents = load_documents(source_directory, ignored_files)
|
126 |
+
if not documents:
|
127 |
+
print("No new documents to load")
|
128 |
+
exit(0)
|
129 |
+
print(f"Loaded {len(documents)} new documents from {source_directory}")
|
130 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
131 |
+
texts = text_splitter.split_documents(documents)
|
132 |
+
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
|
133 |
+
return texts
|
134 |
+
|
135 |
+
def does_vectorstore_exist(persist_directory: str) -> bool:
|
136 |
+
"""
|
137 |
+
Checks if vectorstore exists
|
138 |
+
"""
|
139 |
+
if os.path.exists(os.path.join(persist_directory, 'index')):
|
140 |
+
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
|
141 |
+
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
|
142 |
+
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
|
143 |
+
# At least 3 documents are needed in a working vectorstore
|
144 |
+
if len(list_index_files) > 3:
|
145 |
+
return True
|
146 |
+
return False
|
147 |
+
|
148 |
+
def ingest():
|
149 |
+
# Load environment variables
|
150 |
+
embeddings_model_name = "all-MiniLM-L6-v2"
|
151 |
+
persist_directory = "db"
|
152 |
+
model = "tiiuae/falcon-7b-instruct"
|
153 |
+
source_directory = "source_documents"
|
154 |
+
os.makedirs(source_directory, exist_ok=True)
|
155 |
+
# Load documents and split in chunks
|
156 |
+
print(f"Loading documents from {source_directory}")
|
157 |
+
chunk_size = 500
|
158 |
+
chunk_overlap = 50
|
159 |
+
documents = load_documents(source_directory)
|
160 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
161 |
+
texts = text_splitter.split_documents(documents)
|
162 |
+
print(f"Loaded {len(documents)} documents from {source_directory}")
|
163 |
+
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} characters each)")
|
164 |
+
|
165 |
+
# Create embeddings
|
166 |
+
# embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
167 |
+
|
168 |
+
# Create and store locally vectorstore
|
169 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
170 |
+
db.persist()
|
171 |
+
db = None
|
172 |
+
|
173 |
+
def embed_documents(files):
|
174 |
+
|
175 |
+
saved_files = []
|
176 |
+
source_directory = "source_documents"
|
177 |
+
|
178 |
+
# print(files)
|
179 |
+
# Save the files to the specified folder
|
180 |
+
for file_ in files:
|
181 |
+
print(type(file_))
|
182 |
+
os.makedirs(source_directory, exist_ok= True)
|
183 |
+
filename = "file.pdf"
|
184 |
+
|
185 |
+
file_path = os.path.join(source_directory, filename)
|
186 |
+
saved_files.append(file_path)
|
187 |
+
|
188 |
+
print(type(file_))
|
189 |
+
print(file_path)
|
190 |
+
# file_content = file_.read()
|
191 |
+
with open(file_path, "wb") as f:
|
192 |
+
print("write")
|
193 |
+
f.write(file_)
|
194 |
+
ingest()
|
195 |
+
|
196 |
+
# Delete the contents of the folder
|
197 |
+
[os.remove(os.path.join(source_directory, filename)) or os.path.join(source_directory, filename) for file in files]
|
198 |
+
|
199 |
+
return {"message": "Files embedded successfully"}
|
200 |
+
|
201 |
+
def retrieve_documents(query: str):
|
202 |
+
target_source_chunks = 4
|
203 |
+
mute_stream = ""
|
204 |
+
embeddings_model_name = "all-MiniLM-L6-v2"
|
205 |
+
|
206 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
207 |
+
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
|
208 |
+
# Prepare the LLM
|
209 |
+
callbacks = [] if mute_stream else [StreamingStdOutCallbackHandler()]
|
210 |
+
|
211 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=False)
|
212 |
+
|
213 |
+
# Get the answer from the chain
|
214 |
+
res = qa(query)
|
215 |
+
print(res)
|
216 |
+
answer = res['result']
|
217 |
+
torch.cuda.empty_cache()
|
218 |
+
gc.collect()
|
219 |
+
return answer
|
220 |
+
|
221 |
+
with gr.Blocks() as demo:
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column():
|
224 |
+
file_input = gr.File(file_count="multiple", file_types=["text", ".json", ".csv", ".pdf"], type= 'binary')
|
225 |
+
initiate_btn = gr.Button(value="Generate Embedding")
|
226 |
+
|
227 |
+
with gr.Column():
|
228 |
+
question = gr.Textbox(label="Question")
|
229 |
+
question_btn = gr.Button(value="Question_btn")
|
230 |
+
answer = gr.Textbox(label="answer")
|
231 |
+
|
232 |
+
initiate_btn.click(embed_documents, inputs=file_input, api_name="embed-file")
|
233 |
+
|
234 |
+
question_btn.click(retrieve_documents, inputs=question , outputs=answer, api_name="llm")
|
235 |
+
|
236 |
+
demo.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
einops
|
3 |
+
accelerate
|
4 |
+
xformers
|
5 |
+
chromadb==0.3.26
|
6 |
+
duckdb==0.8.0
|
7 |
+
pdfminer.six==20221105
|
8 |
+
unstructured==0.6.6
|
9 |
+
extract-msg==0.41.1
|
10 |
+
tabulate==0.9.0
|
11 |
+
pandoc==2.3
|
12 |
+
pypandoc==1.11
|
13 |
+
langchain==0.0.177
|
14 |
+
streamlit
|
15 |
+
sentence_transformers
|
16 |
+
gradio
|
17 |
+
PyPDF2==3.0.1
|