File size: 2,368 Bytes
fcc479d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------

import torch
import numpy as np
from PIL import Image
from torchvision import transforms
from utils.visualizer import Visualizer
from detectron2.utils.colormap import random_color
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks


t = []
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
transform = transforms.Compose(t)
metadata = MetadataCatalog.get('ade20k_panoptic_train')

def open_instseg(model, image, texts, inpainting_text, *args, **kwargs):
    thing_classes = [x.strip() for x in texts.split(',')]
    thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))]
    thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}

    MetadataCatalog.get("demo").set(
        thing_colors=thing_colors,
        thing_classes=thing_classes,
        thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
    )

    with torch.no_grad():
        model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + ["background"], is_eval=True)

        metadata = MetadataCatalog.get('demo')
        model.model.metadata = metadata
        model.model.sem_seg_head.num_classes = len(thing_classes)

        image_ori = transform(image)
        width = image_ori.size[0]
        height = image_ori.size[1]
        image = np.asarray(image_ori)
        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()

        batch_inputs = [{'image': images, 'height': height, 'width': width}]
        outputs = model.forward(batch_inputs)
        visual = Visualizer(image_ori, metadata=metadata)

        inst_seg = outputs[-1]['instances']
        inst_seg.pred_masks = inst_seg.pred_masks.cpu()
        inst_seg.pred_boxes = BitMasks(inst_seg.pred_masks > 0).get_bounding_boxes()
        demo = visual.draw_instance_predictions(inst_seg) # rgb Image
        res = demo.get_image()


    MetadataCatalog.remove('demo')
    torch.cuda.empty_cache()
    return Image.fromarray(res), '', None