Spaces:
Runtime error
Runtime error
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py | |
import argparse | |
import torch | |
import sys | |
sys.path.insert(0, ".") | |
from diffusers.models import ( | |
AutoencoderKL, | |
) | |
from omegaconf import OmegaConf | |
from diffusers.schedulers import DDIMScheduler | |
from diffusers.utils import logging | |
from typing import Any | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor | |
from mv_unet import MultiViewUNetModel | |
from pipeline_mvdream import MVDreamPipeline | |
import kiui | |
logger = logging.get_logger(__name__) | |
def assign_to_checkpoint( | |
paths, | |
checkpoint, | |
old_checkpoint, | |
attention_paths_to_split=None, | |
additional_replacements=None, | |
config=None, | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
attention layers, and takes into account additional replacements that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance( | |
paths, list | |
), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
assert config is not None | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape( | |
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] | |
) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if ( | |
attention_paths_to_split is not None | |
and new_path in attention_paths_to_split | |
): | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
is_attn_weight = "proj_attn.weight" in new_path or ( | |
"attentions" in new_path and "to_" in new_path | |
) | |
shape = old_checkpoint[path["old"]].shape | |
if is_attn_weight and len(shape) == 3: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
elif is_attn_weight and len(shape) == 4: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def create_vae_diffusers_config(original_config, image_size): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
if 'imagedream' in original_config.model.target: | |
vae_params = original_config.model.params.vae_config.params.ddconfig | |
_ = original_config.model.params.vae_config.params.embed_dim | |
vae_key = "vae_model." | |
else: | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
_ = original_config.model.params.first_stage_config.params.embed_dim | |
vae_key = "first_stage_model." | |
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params.in_channels, | |
"out_channels": vae_params.out_ch, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params.z_channels, | |
"layers_per_block": vae_params.num_res_blocks, | |
} | |
return config, vae_key | |
def convert_ldm_vae_checkpoint(checkpoint, config, vae_key): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ | |
"encoder.conv_out.weight" | |
] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ | |
"encoder.norm_out.weight" | |
] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[ | |
"encoder.norm_out.bias" | |
] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ | |
"decoder.conv_out.weight" | |
] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ | |
"decoder.norm_out.weight" | |
] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[ | |
"decoder.norm_out.bias" | |
] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len( | |
{ | |
".".join(layer.split(".")[:3]) | |
for layer in vae_state_dict | |
if "encoder.down" in layer | |
} | |
) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] | |
for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len( | |
{ | |
".".join(layer.split(".")[:3]) | |
for layer in vae_state_dict | |
if "decoder.up" in layer | |
} | |
) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] | |
for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [ | |
key | |
for key in down_blocks[i] | |
if f"down.{i}" in key and f"down.{i}.downsample" not in key | |
] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[ | |
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight" | |
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") | |
new_checkpoint[ | |
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias" | |
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
config=config, | |
) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
config=config, | |
) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
config=config, | |
) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key | |
for key in up_blocks[block_id] | |
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[ | |
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight" | |
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] | |
new_checkpoint[ | |
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias" | |
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
config=config, | |
) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
config=config, | |
) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
config=config, | |
) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments( | |
new_item, n_shave_prefix_segments=n_shave_prefix_segments | |
) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "to_q.weight") | |
new_item = new_item.replace("q.bias", "to_q.bias") | |
new_item = new_item.replace("k.weight", "to_k.weight") | |
new_item = new_item.replace("k.bias", "to_k.bias") | |
new_item = new_item.replace("v.weight", "to_v.weight") | |
new_item = new_item.replace("v.bias", "to_v.bias") | |
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
new_item = shave_segments( | |
new_item, n_shave_prefix_segments=n_shave_prefix_segments | |
) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_unet_config(original_config): | |
return OmegaConf.to_container( | |
original_config.model.params.unet_config.params, resolve=True | |
) | |
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device): | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
# print(f"Checkpoint: {checkpoint.keys()}") | |
torch.cuda.empty_cache() | |
original_config = OmegaConf.load(original_config_file) | |
# print(f"Original Config: {original_config}") | |
prediction_type = "epsilon" | |
image_size = 256 | |
num_train_timesteps = ( | |
getattr(original_config.model.params, "timesteps", None) or 1000 | |
) | |
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 | |
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 | |
scheduler = DDIMScheduler( | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
beta_start=beta_start, | |
num_train_timesteps=num_train_timesteps, | |
steps_offset=1, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
prediction_type=prediction_type, | |
) | |
scheduler.register_to_config(clip_sample=False) | |
unet_config = create_unet_config(original_config) | |
# remove unused configs | |
unet_config.pop('legacy', None) | |
unet_config.pop('use_linear_in_transformer', None) | |
unet_config.pop('use_spatial_transformer', None) | |
unet_config.pop('ip_mode', None) | |
unet_config.pop('with_ip', None) | |
unet = MultiViewUNetModel(**unet_config) | |
unet.register_to_config(**unet_config) | |
# print(f"Unet State Dict: {unet.state_dict().keys()}") | |
unet.load_state_dict( | |
{ | |
key.replace("model.diffusion_model.", ""): value | |
for key, value in checkpoint.items() | |
if key.replace("model.diffusion_model.", "") in unet.state_dict() | |
} | |
) | |
for param_name, param in unet.state_dict().items(): | |
set_module_tensor_to_device(unet, param_name, device=device, value=param) | |
# Convert the VAE model. | |
vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size) | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key) | |
if ( | |
"model" in original_config | |
and "params" in original_config.model | |
and "scale_factor" in original_config.model.params | |
): | |
vae_scaling_factor = original_config.model.params.scale_factor | |
else: | |
vae_scaling_factor = 0.18215 # default SD scaling factor | |
vae_config["scaling_factor"] = vae_scaling_factor | |
with init_empty_weights(): | |
vae = AutoencoderKL(**vae_config) | |
for param_name, param in converted_vae_checkpoint.items(): | |
set_module_tensor_to_device(vae, param_name, device=device, value=param) | |
# we only supports SD 2.1 based model | |
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer") | |
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore | |
# imagedream variant | |
if unet.ip_dim > 0: | |
feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") | |
image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") | |
else: | |
feature_extractor = None | |
image_encoder = None | |
pipe = MVDreamPipeline( | |
vae=vae, | |
unet=unet, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
return pipe | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--original_config_file", | |
default=None, | |
type=str, | |
help="The YAML config file corresponding to the original architecture.", | |
) | |
parser.add_argument( | |
"--to_safetensors", | |
action="store_true", | |
help="Whether to store pipeline in safetensors format or not.", | |
) | |
parser.add_argument( | |
"--half", action="store_true", help="Save weights in half precision." | |
) | |
parser.add_argument( | |
"--test", | |
action="store_true", | |
help="Whether to test inference after convertion.", | |
) | |
parser.add_argument( | |
"--dump_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the output model.", | |
) | |
parser.add_argument( | |
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" | |
) | |
args = parser.parse_args() | |
args.device = torch.device( | |
args.device | |
if args.device is not None | |
else "cuda" | |
if torch.cuda.is_available() | |
else "cpu" | |
) | |
pipe = convert_from_original_mvdream_ckpt( | |
checkpoint_path=args.checkpoint_path, | |
original_config_file=args.original_config_file, | |
device=args.device, | |
) | |
if args.half: | |
pipe.to(torch_dtype=torch.float16) | |
print(f"Saving pipeline to {args.dump_path}...") | |
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |
if args.test: | |
try: | |
# mvdream | |
if pipe.unet.ip_dim == 0: | |
print(f"Testing each subcomponent of the pipeline...") | |
images = pipe( | |
prompt="Head of Hatsune Miku", | |
negative_prompt="painting, bad quality, flat", | |
output_type="pil", | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
device=args.device, | |
) | |
for i, image in enumerate(images): | |
image.save(f"test_image_{i}.png") # type: ignore | |
print(f"Testing entire pipeline...") | |
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore | |
images = loaded_pipe( | |
prompt="Head of Hatsune Miku", | |
negative_prompt="painting, bad quality, flat", | |
output_type="pil", | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
device=args.device, | |
) | |
for i, image in enumerate(images): | |
image.save(f"test_image_{i}.png") # type: ignore | |
# imagedream | |
else: | |
input_image = kiui.read_image('data/anya_rgba.png', mode='float') | |
print(f"Testing each subcomponent of the pipeline...") | |
images = pipe( | |
image=input_image, | |
prompt="", | |
negative_prompt="", | |
output_type="pil", | |
guidance_scale=5.0, | |
num_inference_steps=50, | |
device=args.device, | |
) | |
for i, image in enumerate(images): | |
image.save(f"test_image_{i}.png") # type: ignore | |
print(f"Testing entire pipeline...") | |
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore | |
images = loaded_pipe( | |
image=input_image, | |
prompt="", | |
negative_prompt="", | |
output_type="pil", | |
guidance_scale=5.0, | |
num_inference_steps=50, | |
device=args.device, | |
) | |
for i, image in enumerate(images): | |
image.save(f"test_image_{i}.png") # type: ignore | |
print("Inference test passed!") | |
except Exception as e: | |
print(f"Failed to test inference: {e}") | |