Spaces:
Running
on
Zero
Running
on
Zero
Upload 13 files
Browse files- .gitattributes +1 -0
- app.py +788 -0
- assets/demos.gif +3 -0
- gradio_demo/utils_drag.py +271 -0
- models_diffusers/attention.py +548 -0
- models_diffusers/attention_processor.py +0 -0
- models_diffusers/controlnet_svd.py +788 -0
- models_diffusers/sift_match.py +239 -0
- models_diffusers/transformer_temporal.py +384 -0
- models_diffusers/unet_3d_blocks.py +2405 -0
- models_diffusers/unet_spatio_temporal_condition.py +978 -0
- models_diffusers/utils.py +85 -0
- pipelines/pipeline_stable_video_diffusion_interp_control.py +854 -0
- requirements.txt +12 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/demos.gif filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import uuid
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from scipy.interpolate import interp1d, PchipInterpolator
|
7 |
+
from packaging import version
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torchvision
|
11 |
+
import gradio as gr
|
12 |
+
# from moviepy.editor import *
|
13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
14 |
+
from diffusers.utils import load_image, export_to_video, export_to_gif
|
15 |
+
|
16 |
+
import os
|
17 |
+
import sys
|
18 |
+
sys.path.insert(0, os.getcwd())
|
19 |
+
from models_diffusers.controlnet_svd import ControlNetSVDModel
|
20 |
+
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
21 |
+
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline
|
22 |
+
from gradio_demo.utils_drag import *
|
23 |
+
|
24 |
+
import warnings
|
25 |
+
print("gr file", gr.__file__)
|
26 |
+
|
27 |
+
from huggingface_hub import hf_hub_download
|
28 |
+
os.makedirs("checkpoints", exist_ok=True)
|
29 |
+
hf_hub_download(
|
30 |
+
"wwen1997/framer_512x320",
|
31 |
+
"checkpoints/framer_512x320",
|
32 |
+
token=os.environ["TOKEN"],
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
def get_args():
|
37 |
+
import argparse
|
38 |
+
parser = argparse.ArgumentParser()
|
39 |
+
|
40 |
+
parser.add_argument("--min_guidance_scale", type=float, default=1.0)
|
41 |
+
parser.add_argument("--max_guidance_scale", type=float, default=3.0)
|
42 |
+
parser.add_argument("--middle_max_guidance", type=int, default=0, choices=[0, 1])
|
43 |
+
parser.add_argument("--with_control", type=int, default=1, choices=[0, 1])
|
44 |
+
|
45 |
+
parser.add_argument("--controlnet_cond_scale", type=float, default=1.0)
|
46 |
+
|
47 |
+
parser.add_argument(
|
48 |
+
"--dataset",
|
49 |
+
type=str,
|
50 |
+
default='videoswap',
|
51 |
+
)
|
52 |
+
|
53 |
+
parser.add_argument(
|
54 |
+
"--model", type=str,
|
55 |
+
default="checkpoints/framer_512x320",
|
56 |
+
help="Path to model.",
|
57 |
+
)
|
58 |
+
|
59 |
+
parser.add_argument("--output_dir", type=str, default="gradio_demo/outputs", help="Path to the output video.")
|
60 |
+
|
61 |
+
parser.add_argument("--seed", type=int, default=42, help="random seed.")
|
62 |
+
|
63 |
+
parser.add_argument("--noise_aug", type=float, default=0.02)
|
64 |
+
|
65 |
+
parser.add_argument("--num_frames", type=int, default=14)
|
66 |
+
parser.add_argument("--frame_interval", type=int, default=2)
|
67 |
+
|
68 |
+
parser.add_argument("--width", type=int, default=512)
|
69 |
+
parser.add_argument("--height", type=int, default=320)
|
70 |
+
|
71 |
+
parser.add_argument(
|
72 |
+
"--num_workers",
|
73 |
+
type=int,
|
74 |
+
default=8,
|
75 |
+
help=(
|
76 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
77 |
+
),
|
78 |
+
)
|
79 |
+
|
80 |
+
args = parser.parse_args()
|
81 |
+
|
82 |
+
return args
|
83 |
+
|
84 |
+
|
85 |
+
args = get_args()
|
86 |
+
ensure_dirname(args.output_dir)
|
87 |
+
|
88 |
+
|
89 |
+
color_list = []
|
90 |
+
for i in range(20):
|
91 |
+
color = np.concatenate([np.random.random(4)*255], axis=0)
|
92 |
+
color_list.append(color)
|
93 |
+
|
94 |
+
|
95 |
+
def interpolate_trajectory(points, n_points):
|
96 |
+
x = [point[0] for point in points]
|
97 |
+
y = [point[1] for point in points]
|
98 |
+
|
99 |
+
t = np.linspace(0, 1, len(points))
|
100 |
+
|
101 |
+
# fx = interp1d(t, x, kind='cubic')
|
102 |
+
# fy = interp1d(t, y, kind='cubic')
|
103 |
+
fx = PchipInterpolator(t, x)
|
104 |
+
fy = PchipInterpolator(t, y)
|
105 |
+
|
106 |
+
new_t = np.linspace(0, 1, n_points)
|
107 |
+
|
108 |
+
new_x = fx(new_t)
|
109 |
+
new_y = fy(new_t)
|
110 |
+
new_points = list(zip(new_x, new_y))
|
111 |
+
|
112 |
+
return new_points
|
113 |
+
|
114 |
+
|
115 |
+
def gen_gaussian_heatmap(imgSize=200):
|
116 |
+
circle_img = np.zeros((imgSize, imgSize), np.float32)
|
117 |
+
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
|
118 |
+
|
119 |
+
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
|
120 |
+
|
121 |
+
for i in range(imgSize):
|
122 |
+
for j in range(imgSize):
|
123 |
+
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
|
124 |
+
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
|
125 |
+
|
126 |
+
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
|
127 |
+
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
|
128 |
+
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
|
129 |
+
|
130 |
+
return isotropicGrayscaleImage
|
131 |
+
|
132 |
+
|
133 |
+
def get_vis_image(
|
134 |
+
target_size=(512 , 512), points=None, side=20,
|
135 |
+
num_frames=14,
|
136 |
+
# original_size=(512 , 512), args="", first_frame=None, is_mask = False, model_id=None,
|
137 |
+
):
|
138 |
+
|
139 |
+
# images = []
|
140 |
+
vis_images = []
|
141 |
+
heatmap = gen_gaussian_heatmap()
|
142 |
+
|
143 |
+
trajectory_list = []
|
144 |
+
radius_list = []
|
145 |
+
|
146 |
+
for index, point in enumerate(points):
|
147 |
+
trajectories = [[int(i[0]), int(i[1])] for i in point]
|
148 |
+
trajectory_list.append(trajectories)
|
149 |
+
|
150 |
+
radius = 20
|
151 |
+
radius_list.append(radius)
|
152 |
+
|
153 |
+
if len(trajectory_list) == 0:
|
154 |
+
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
|
155 |
+
return vis_images
|
156 |
+
|
157 |
+
for idxx, point in enumerate(trajectory_list[0]):
|
158 |
+
new_img = np.zeros(target_size, np.uint8)
|
159 |
+
vis_img = new_img.copy()
|
160 |
+
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
|
161 |
+
|
162 |
+
if idxx >= args.num_frames:
|
163 |
+
break
|
164 |
+
|
165 |
+
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
|
166 |
+
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
|
167 |
+
|
168 |
+
center_coordinate = trajectory[idxx]
|
169 |
+
trajectory_ = trajectory[:idxx]
|
170 |
+
side = min(radius, 50)
|
171 |
+
|
172 |
+
y1 = max(center_coordinate[1] - side,0)
|
173 |
+
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
|
174 |
+
x1 = max(center_coordinate[0] - side, 0)
|
175 |
+
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
|
176 |
+
|
177 |
+
if x2-x1>3 and y2-y1>3:
|
178 |
+
need_map = cv2.resize(heatmap, (x2-x1, y2-y1))
|
179 |
+
new_img[y1:y2, x1:x2] = need_map.copy()
|
180 |
+
|
181 |
+
if cc >= 0:
|
182 |
+
vis_img[y1:y2,x1:x2] = need_map.copy()
|
183 |
+
if len(trajectory_) == 1:
|
184 |
+
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
|
185 |
+
else:
|
186 |
+
for itt in range(len(trajectory_)-1):
|
187 |
+
cv2.line(vis_img, (trajectory_[itt][0], trajectory_[itt][1]), (trajectory_[itt+1][0], trajectory_[itt+1][1]), (255, 255, 255), 3)
|
188 |
+
|
189 |
+
img = new_img
|
190 |
+
|
191 |
+
# Ensure all images are in RGB format
|
192 |
+
if len(img.shape) == 2: # Grayscale image
|
193 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
194 |
+
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_GRAY2RGB)
|
195 |
+
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
|
196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
197 |
+
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
|
198 |
+
|
199 |
+
# Convert the numpy array to a PIL image
|
200 |
+
# pil_img = Image.fromarray(img)
|
201 |
+
# images.append(pil_img)
|
202 |
+
vis_images.append(Image.fromarray(vis_img))
|
203 |
+
|
204 |
+
return vis_images
|
205 |
+
|
206 |
+
|
207 |
+
def frames_to_video(frames_folder, output_video_path, fps=7):
|
208 |
+
frame_files = os.listdir(frames_folder)
|
209 |
+
# sort the frame files by their names
|
210 |
+
frame_files = sorted(frame_files, key=lambda x: int(x.split(".")[0]))
|
211 |
+
|
212 |
+
video = []
|
213 |
+
for frame_file in frame_files:
|
214 |
+
frame_path = os.path.join(frames_folder, frame_file)
|
215 |
+
frame = torchvision.io.read_image(frame_path)
|
216 |
+
video.append(frame)
|
217 |
+
|
218 |
+
video = torch.stack(video)
|
219 |
+
video = rearrange(video, 'T C H W -> T H W C')
|
220 |
+
torchvision.io.write_video(output_video_path, video, fps=fps)
|
221 |
+
|
222 |
+
|
223 |
+
def save_gifs_side_by_side(
|
224 |
+
batch_output,
|
225 |
+
validation_control_images,
|
226 |
+
output_folder,
|
227 |
+
target_size=(512 , 512),
|
228 |
+
duration=200,
|
229 |
+
point_tracks=None,
|
230 |
+
):
|
231 |
+
flattened_batch_output = batch_output
|
232 |
+
def create_gif(image_list, gif_path, duration=100):
|
233 |
+
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
|
234 |
+
pil_images = [img for img in pil_images if img is not None]
|
235 |
+
if pil_images:
|
236 |
+
pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], loop=0, duration=duration)
|
237 |
+
|
238 |
+
# also save all the pil_images
|
239 |
+
tmp_folder = gif_path.replace(".gif", "")
|
240 |
+
print(tmp_folder)
|
241 |
+
ensure_dirname(tmp_folder)
|
242 |
+
tmp_frame_list = []
|
243 |
+
for idx, pil_image in enumerate(pil_images):
|
244 |
+
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
|
245 |
+
pil_image.save(tmp_frame_path)
|
246 |
+
tmp_frame_list.append(tmp_frame_path)
|
247 |
+
|
248 |
+
# also save as mp4
|
249 |
+
output_video_path = gif_path.replace(".gif", ".mp4")
|
250 |
+
frames_to_video(tmp_folder, output_video_path, fps=7)
|
251 |
+
|
252 |
+
# Creating GIFs for each image list
|
253 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
254 |
+
gif_paths = []
|
255 |
+
|
256 |
+
for idx, image_list in enumerate([validation_control_images, flattened_batch_output]):
|
257 |
+
|
258 |
+
gif_path = os.path.join(output_folder.replace("vis_gif.gif", ""), f"temp_{idx}_{timestamp}.gif")
|
259 |
+
create_gif(image_list, gif_path)
|
260 |
+
gif_paths.append(gif_path)
|
261 |
+
|
262 |
+
# also save the point_tracks
|
263 |
+
assert point_tracks is not None
|
264 |
+
point_tracks_path = gif_path.replace(".gif", ".npy")
|
265 |
+
np.save(point_tracks_path, point_tracks.cpu().numpy())
|
266 |
+
|
267 |
+
# Function to combine GIFs side by side
|
268 |
+
def combine_gifs_side_by_side(gif_paths, output_path):
|
269 |
+
print(gif_paths)
|
270 |
+
gifs = [Image.open(gif) for gif in gif_paths]
|
271 |
+
|
272 |
+
# Assuming all gifs have the same frame count and duration
|
273 |
+
frames = []
|
274 |
+
for frame_idx in range(gifs[-1].n_frames):
|
275 |
+
combined_frame = None
|
276 |
+
for gif in gifs:
|
277 |
+
if frame_idx >= gif.n_frames:
|
278 |
+
gif.seek(gif.n_frames - 1)
|
279 |
+
else:
|
280 |
+
gif.seek(frame_idx)
|
281 |
+
if combined_frame is None:
|
282 |
+
combined_frame = gif.copy()
|
283 |
+
else:
|
284 |
+
combined_frame = get_concat_h(combined_frame, gif.copy(), gap=10)
|
285 |
+
frames.append(combined_frame)
|
286 |
+
|
287 |
+
if output_path.endswith(".mp4"):
|
288 |
+
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
|
289 |
+
video = torch.stack(video)
|
290 |
+
video = rearrange(video, 'T C H W -> T H W C')
|
291 |
+
torchvision.io.write_video(output_path, video, fps=7)
|
292 |
+
print(f"Saved video to {output_path}")
|
293 |
+
else:
|
294 |
+
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
|
295 |
+
|
296 |
+
# Helper function to concatenate images horizontally
|
297 |
+
def get_concat_h(im1, im2, gap=10):
|
298 |
+
# # img first, heatmap second
|
299 |
+
# im1, im2 = im2, im1
|
300 |
+
|
301 |
+
dst = Image.new('RGB', (im1.width + im2.width + gap, max(im1.height, im2.height)), (255, 255, 255))
|
302 |
+
dst.paste(im1, (0, 0))
|
303 |
+
dst.paste(im2, (im1.width + gap, 0))
|
304 |
+
return dst
|
305 |
+
|
306 |
+
# Helper function to concatenate images vertically
|
307 |
+
def get_concat_v(im1, im2):
|
308 |
+
dst = Image.new('RGB', (max(im1.width, im2.width), im1.height + im2.height))
|
309 |
+
dst.paste(im1, (0, 0))
|
310 |
+
dst.paste(im2, (0, im1.height))
|
311 |
+
return dst
|
312 |
+
|
313 |
+
# Combine the GIFs into a single file
|
314 |
+
combined_gif_path = output_folder
|
315 |
+
combine_gifs_side_by_side(gif_paths, combined_gif_path)
|
316 |
+
|
317 |
+
combined_gif_path_v = gif_path.replace(".gif", "_v.mp4")
|
318 |
+
ensure_dirname(combined_gif_path_v.replace(".mp4", ""))
|
319 |
+
combine_gifs_side_by_side(gif_paths, combined_gif_path_v)
|
320 |
+
|
321 |
+
# # Clean up temporary GIFs
|
322 |
+
# for gif_path in gif_paths:
|
323 |
+
# os.remove(gif_path)
|
324 |
+
|
325 |
+
return combined_gif_path
|
326 |
+
|
327 |
+
|
328 |
+
# Define functions
|
329 |
+
def validate_and_convert_image(image, target_size=(512 , 512)):
|
330 |
+
if image is None:
|
331 |
+
print("Encountered a None image")
|
332 |
+
return None
|
333 |
+
|
334 |
+
if isinstance(image, torch.Tensor):
|
335 |
+
# Convert PyTorch tensor to PIL Image
|
336 |
+
if image.ndim == 3 and image.shape[0] in [1, 3]: # Check for CxHxW format
|
337 |
+
if image.shape[0] == 1: # Convert single-channel grayscale to RGB
|
338 |
+
image = image.repeat(3, 1, 1)
|
339 |
+
image = image.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
|
340 |
+
image = Image.fromarray(image)
|
341 |
+
else:
|
342 |
+
print(f"Invalid image tensor shape: {image.shape}")
|
343 |
+
return None
|
344 |
+
elif isinstance(image, Image.Image):
|
345 |
+
# Resize PIL Image
|
346 |
+
image = image.resize(target_size)
|
347 |
+
else:
|
348 |
+
print("Image is not a PIL Image or a PyTorch tensor")
|
349 |
+
return None
|
350 |
+
|
351 |
+
return image
|
352 |
+
|
353 |
+
|
354 |
+
class Framer:
|
355 |
+
|
356 |
+
def __init__(self, device, args, height, width, model_length, dtype=torch.float16, use_sift=False):
|
357 |
+
self.device = device
|
358 |
+
self.dtype = dtype
|
359 |
+
|
360 |
+
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
361 |
+
os.path.join(args.model, "unet"),
|
362 |
+
torch_dtype=torch.float16,
|
363 |
+
low_cpu_mem_usage=True,
|
364 |
+
custom_resume=True,
|
365 |
+
)
|
366 |
+
unet = unet.to(device, dtype)
|
367 |
+
|
368 |
+
controlnet = ControlNetSVDModel.from_pretrained(
|
369 |
+
os.path.join(args.model, "controlnet"),
|
370 |
+
)
|
371 |
+
controlnet = controlnet.to(device, dtype)
|
372 |
+
|
373 |
+
if is_xformers_available():
|
374 |
+
import xformers
|
375 |
+
xformers_version = version.parse(xformers.__version__)
|
376 |
+
unet.enable_xformers_memory_efficient_attention()
|
377 |
+
# controlnet.enable_xformers_memory_efficient_attention()
|
378 |
+
else:
|
379 |
+
raise ValueError(
|
380 |
+
"xformers is not available. Make sure it is installed correctly")
|
381 |
+
|
382 |
+
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
|
383 |
+
"stabilityai/stable-video-diffusion-img2vid-xt",
|
384 |
+
unet=unet,
|
385 |
+
controlnet=controlnet,
|
386 |
+
low_cpu_mem_usage=False,
|
387 |
+
torch_dtype=torch.float16, variant="fp16", local_files_only=True,
|
388 |
+
)
|
389 |
+
pipe.to(device)
|
390 |
+
|
391 |
+
self.pipeline = pipe
|
392 |
+
# self.pipeline.enable_model_cpu_offload()
|
393 |
+
|
394 |
+
self.height = height
|
395 |
+
self.width = width
|
396 |
+
self.args = args
|
397 |
+
self.model_length = model_length
|
398 |
+
self.use_sift = use_sift
|
399 |
+
|
400 |
+
def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id):
|
401 |
+
original_width, original_height = 512, 320 # TODO
|
402 |
+
|
403 |
+
# load_image
|
404 |
+
image = Image.open(first_frame_path).convert('RGB')
|
405 |
+
width, height = image.size
|
406 |
+
image = image.resize((self.width, self.height))
|
407 |
+
|
408 |
+
image_end = Image.open(last_frame_path).convert('RGB')
|
409 |
+
image_end = image_end.resize((self.width, self.height))
|
410 |
+
|
411 |
+
input_all_points = tracking_points.constructor_args['value']
|
412 |
+
|
413 |
+
sift_track_update = False
|
414 |
+
anchor_points_flag = None
|
415 |
+
|
416 |
+
if (len(input_all_points) == 0) and self.use_sift:
|
417 |
+
sift_track_update = True
|
418 |
+
controlnet_cond_scale = 0.5
|
419 |
+
|
420 |
+
from models_diffusers.sift_match import sift_match
|
421 |
+
from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory
|
422 |
+
|
423 |
+
output_file_sift = os.path.join(args.output_dir, "sift.png")
|
424 |
+
|
425 |
+
# (f, topk, 2), f=2 (before interpolation)
|
426 |
+
pred_tracks = sift_match(
|
427 |
+
image,
|
428 |
+
image_end,
|
429 |
+
thr=0.5,
|
430 |
+
topk=5,
|
431 |
+
method="random",
|
432 |
+
output_path=output_file_sift,
|
433 |
+
)
|
434 |
+
|
435 |
+
if pred_tracks is not None:
|
436 |
+
# interpolate the tracks, following draganything gradio demo
|
437 |
+
pred_tracks = sift_interpolate_trajectory(pred_tracks, num_frames=self.model_length)
|
438 |
+
|
439 |
+
anchor_points_flag = torch.zeros((self.model_length, pred_tracks.shape[1])).to(pred_tracks.device)
|
440 |
+
anchor_points_flag[0] = 1
|
441 |
+
anchor_points_flag[-1] = 1
|
442 |
+
|
443 |
+
pred_tracks = pred_tracks.permute(1, 0, 2) # (num_points, num_frames, 2)
|
444 |
+
|
445 |
+
else:
|
446 |
+
|
447 |
+
resized_all_points = [
|
448 |
+
tuple([
|
449 |
+
tuple([int(e1[0] * self.width / original_width), int(e1[1] * self.height / original_height)])
|
450 |
+
for e1 in e])
|
451 |
+
for e in input_all_points
|
452 |
+
]
|
453 |
+
|
454 |
+
# a list of num_tracks tuples, each tuple contains a track with several points, represented as (x, y)
|
455 |
+
# in image w & h scale
|
456 |
+
|
457 |
+
for idx, splited_track in enumerate(resized_all_points):
|
458 |
+
if len(splited_track) == 0:
|
459 |
+
warnings.warn("running without point trajectory control")
|
460 |
+
continue
|
461 |
+
|
462 |
+
if len(splited_track) == 1: # stationary point
|
463 |
+
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
|
464 |
+
splited_track = tuple([splited_track[0], displacement_point])
|
465 |
+
# interpolate the track
|
466 |
+
splited_track = interpolate_trajectory(splited_track, self.model_length)
|
467 |
+
splited_track = splited_track[:self.model_length]
|
468 |
+
resized_all_points[idx] = splited_track
|
469 |
+
|
470 |
+
pred_tracks = torch.tensor(resized_all_points) # (num_points, num_frames, 2)
|
471 |
+
|
472 |
+
vis_images = get_vis_image(
|
473 |
+
target_size=(self.args.height, self.args.width),
|
474 |
+
points=pred_tracks,
|
475 |
+
num_frames=self.model_length,
|
476 |
+
)
|
477 |
+
|
478 |
+
if len(pred_tracks.shape) != 3:
|
479 |
+
print("pred_tracks.shape", pred_tracks.shape)
|
480 |
+
with_control = False
|
481 |
+
controlnet_cond_scale = 0.0
|
482 |
+
else:
|
483 |
+
with_control = True
|
484 |
+
pred_tracks = pred_tracks.permute(1, 0, 2).to(self.device, self.dtype) # (num_frames, num_points, 2)
|
485 |
+
|
486 |
+
point_embedding = None
|
487 |
+
video_frames = self.pipeline(
|
488 |
+
image,
|
489 |
+
image_end,
|
490 |
+
# trajectory control
|
491 |
+
with_control=with_control,
|
492 |
+
point_tracks=pred_tracks,
|
493 |
+
point_embedding=point_embedding,
|
494 |
+
with_id_feature=False,
|
495 |
+
controlnet_cond_scale=controlnet_cond_scale,
|
496 |
+
# others
|
497 |
+
num_frames=14,
|
498 |
+
width=width,
|
499 |
+
height=height,
|
500 |
+
# decode_chunk_size=8,
|
501 |
+
# generator=generator,
|
502 |
+
motion_bucket_id=motion_bucket_id,
|
503 |
+
fps=7,
|
504 |
+
num_inference_steps=30,
|
505 |
+
# track
|
506 |
+
sift_track_update=sift_track_update,
|
507 |
+
anchor_points_flag=anchor_points_flag,
|
508 |
+
).frames[0]
|
509 |
+
|
510 |
+
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
|
511 |
+
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
|
512 |
+
vis_images = [Image.fromarray(img) for img in vis_images]
|
513 |
+
|
514 |
+
# video_frames = [img for sublist in video_frames for img in sublist]
|
515 |
+
val_save_dir = os.path.join(args.output_dir, "vis_gif.gif")
|
516 |
+
save_gifs_side_by_side(
|
517 |
+
video_frames,
|
518 |
+
vis_images[:self.model_length],
|
519 |
+
val_save_dir,
|
520 |
+
target_size=(self.width, self.height),
|
521 |
+
duration=110,
|
522 |
+
point_tracks=pred_tracks,
|
523 |
+
)
|
524 |
+
|
525 |
+
return val_save_dir
|
526 |
+
|
527 |
+
|
528 |
+
with gr.Blocks() as demo:
|
529 |
+
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")
|
530 |
+
|
531 |
+
gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2410.18978'><b>Framer: Interactive Frame Interpolation</b></a>.<br>
|
532 |
+
Github Repo can be found at https://github.com/aim-uofa/Framer<br>
|
533 |
+
The template is inspired by DragAnything.""")
|
534 |
+
|
535 |
+
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)
|
536 |
+
|
537 |
+
gr.Markdown("""## Usage: <br>
|
538 |
+
1. Upload images<br>
|
539 |
+
  1.1 Upload the start image via the "Upload Start Image" button.<br>
|
540 |
+
  1.2. Upload the end image via the "Upload End Image" button.<br>
|
541 |
+
2. (Optional) Draw some drags.<br>
|
542 |
+
  2.1. Click "Add Drag Trajectory" to add the motion trajectory.<br>
|
543 |
+
  2.2. You can click several points on either start or end image to forms a path.<br>
|
544 |
+
  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
|
545 |
+
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
|
546 |
+
3. Interpolate the images (according the path) with a click on "Run" button. <br>""")
|
547 |
+
|
548 |
+
# device, args, height, width, model_length
|
549 |
+
Framer = Framer("cuda:0", args, 320, 512, 14)
|
550 |
+
first_frame_path = gr.State()
|
551 |
+
last_frame_path = gr.State()
|
552 |
+
tracking_points = gr.State([])
|
553 |
+
|
554 |
+
def reset_states(first_frame_path, last_frame_path, tracking_points):
|
555 |
+
first_frame_path = gr.State()
|
556 |
+
last_frame_path = gr.State()
|
557 |
+
tracking_points = gr.State([])
|
558 |
+
|
559 |
+
return first_frame_path, last_frame_path, tracking_points
|
560 |
+
|
561 |
+
|
562 |
+
def preprocess_image(image):
|
563 |
+
|
564 |
+
image_pil = image2pil(image.name)
|
565 |
+
|
566 |
+
raw_w, raw_h = image_pil.size
|
567 |
+
# resize_ratio = max(512 / raw_w, 320 / raw_h)
|
568 |
+
# image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
569 |
+
# image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
|
570 |
+
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
571 |
+
|
572 |
+
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
573 |
+
|
574 |
+
image_pil.save(first_frame_path)
|
575 |
+
|
576 |
+
return first_frame_path, first_frame_path, gr.State([])
|
577 |
+
|
578 |
+
|
579 |
+
def preprocess_image_end(image_end):
|
580 |
+
|
581 |
+
image_end_pil = image2pil(image_end.name)
|
582 |
+
|
583 |
+
raw_w, raw_h = image_end_pil.size
|
584 |
+
# resize_ratio = max(512 / raw_w, 320 / raw_h)
|
585 |
+
# image_end_pil = image_end_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
586 |
+
# image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
|
587 |
+
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)
|
588 |
+
|
589 |
+
last_frame_path = os.path.join(args.output_dir, f"last_frame_{str(uuid.uuid4())[:4]}.png")
|
590 |
+
|
591 |
+
image_end_pil.save(last_frame_path)
|
592 |
+
|
593 |
+
return last_frame_path, last_frame_path, gr.State([])
|
594 |
+
|
595 |
+
|
596 |
+
def add_drag(tracking_points):
|
597 |
+
tracking_points.constructor_args['value'].append([])
|
598 |
+
return tracking_points
|
599 |
+
|
600 |
+
|
601 |
+
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
602 |
+
tracking_points.constructor_args['value'].pop()
|
603 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
604 |
+
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
605 |
+
w, h = transparent_background.size
|
606 |
+
transparent_layer = np.zeros((h, w, 4))
|
607 |
+
|
608 |
+
for track in tracking_points.constructor_args['value']:
|
609 |
+
if len(track) > 1:
|
610 |
+
for i in range(len(track)-1):
|
611 |
+
start_point = track[i]
|
612 |
+
end_point = track[i+1]
|
613 |
+
vx = end_point[0] - start_point[0]
|
614 |
+
vy = end_point[1] - start_point[1]
|
615 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
616 |
+
if i == len(track)-2:
|
617 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
618 |
+
else:
|
619 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
620 |
+
else:
|
621 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
622 |
+
|
623 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
624 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
625 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
626 |
+
|
627 |
+
return tracking_points, trajectory_map, trajectory_map_end
|
628 |
+
|
629 |
+
|
630 |
+
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
631 |
+
tracking_points.constructor_args['value'][-1].pop()
|
632 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
633 |
+
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
634 |
+
w, h = transparent_background.size
|
635 |
+
transparent_layer = np.zeros((h, w, 4))
|
636 |
+
|
637 |
+
for track in tracking_points.constructor_args['value']:
|
638 |
+
if len(track) > 1:
|
639 |
+
for i in range(len(track)-1):
|
640 |
+
start_point = track[i]
|
641 |
+
end_point = track[i+1]
|
642 |
+
vx = end_point[0] - start_point[0]
|
643 |
+
vy = end_point[1] - start_point[1]
|
644 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
645 |
+
if i == len(track)-2:
|
646 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
647 |
+
else:
|
648 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
649 |
+
else:
|
650 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
651 |
+
|
652 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
653 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
654 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
655 |
+
|
656 |
+
return tracking_points, trajectory_map, trajectory_map_end
|
657 |
+
|
658 |
+
|
659 |
+
def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
|
660 |
+
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
661 |
+
tracking_points.constructor_args['value'][-1].append(evt.index)
|
662 |
+
|
663 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
664 |
+
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
665 |
+
|
666 |
+
w, h = transparent_background.size
|
667 |
+
transparent_layer = 0
|
668 |
+
for idx, track in enumerate(tracking_points.constructor_args['value']):
|
669 |
+
# mask = cv2.imread(
|
670 |
+
# os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
|
671 |
+
# )
|
672 |
+
mask = np.zeros((320, 512, 3))
|
673 |
+
color = color_list[idx+1]
|
674 |
+
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
675 |
+
|
676 |
+
if len(track) > 1:
|
677 |
+
for i in range(len(track)-1):
|
678 |
+
start_point = track[i]
|
679 |
+
end_point = track[i+1]
|
680 |
+
vx = end_point[0] - start_point[0]
|
681 |
+
vy = end_point[1] - start_point[1]
|
682 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
683 |
+
if i == len(track)-2:
|
684 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
685 |
+
else:
|
686 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
687 |
+
else:
|
688 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
689 |
+
|
690 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
691 |
+
alpha_coef = 0.99
|
692 |
+
im2_data = transparent_layer.getdata()
|
693 |
+
new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
|
694 |
+
transparent_layer.putdata(new_im2_data)
|
695 |
+
|
696 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
697 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
698 |
+
|
699 |
+
return tracking_points, trajectory_map, trajectory_map_end
|
700 |
+
|
701 |
+
with gr.Row():
|
702 |
+
with gr.Column(scale=1):
|
703 |
+
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
704 |
+
image_end_upload_button = gr.UploadButton(label="Upload End Image", file_types=["image"])
|
705 |
+
# select_area_button = gr.Button(value="Select Area with SAM")
|
706 |
+
add_drag_button = gr.Button(value="Add New Drag Trajectory")
|
707 |
+
reset_button = gr.Button(value="Reset")
|
708 |
+
run_button = gr.Button(value="Run")
|
709 |
+
delete_last_drag_button = gr.Button(value="Delete last drag")
|
710 |
+
delete_last_step_button = gr.Button(value="Delete last step")
|
711 |
+
|
712 |
+
with gr.Column(scale=7):
|
713 |
+
with gr.Row():
|
714 |
+
with gr.Column(scale=6):
|
715 |
+
input_image = gr.Image(
|
716 |
+
label="start frame",
|
717 |
+
interactive=True,
|
718 |
+
height=320,
|
719 |
+
width=512,
|
720 |
+
)
|
721 |
+
|
722 |
+
with gr.Column(scale=6):
|
723 |
+
input_image_end = gr.Image(
|
724 |
+
label="end frame",
|
725 |
+
interactive=True,
|
726 |
+
height=320,
|
727 |
+
width=512,
|
728 |
+
)
|
729 |
+
|
730 |
+
with gr.Row():
|
731 |
+
with gr.Column(scale=1):
|
732 |
+
|
733 |
+
controlnet_cond_scale = gr.Slider(
|
734 |
+
label='Control Scale',
|
735 |
+
minimum=0.0,
|
736 |
+
maximum=10,
|
737 |
+
step=0.1,
|
738 |
+
value=1.0,
|
739 |
+
)
|
740 |
+
|
741 |
+
motion_bucket_id = gr.Slider(
|
742 |
+
label='Motion Bucket',
|
743 |
+
minimum=1,
|
744 |
+
maximum=180,
|
745 |
+
step=1,
|
746 |
+
value=100,
|
747 |
+
)
|
748 |
+
|
749 |
+
with gr.Column(scale=5):
|
750 |
+
output_video = gr.Image(
|
751 |
+
label="Output Video",
|
752 |
+
height=320,
|
753 |
+
width=1152,
|
754 |
+
)
|
755 |
+
|
756 |
+
|
757 |
+
with gr.Row():
|
758 |
+
gr.Markdown("""
|
759 |
+
## Citation
|
760 |
+
```bibtex
|
761 |
+
@article{wang2024framer,
|
762 |
+
title={Framer: Interactive Frame Interpolation},
|
763 |
+
author={Wang, Wen and Wang, Qiuyu and Zheng, Kecheng and Ouyang, Hao and Chen, Zhekai and Gong, Biao and Chen, Hao and Shen, Yujun and Shen, Chunhua},
|
764 |
+
journal={arXiv preprint https://arxiv.org/abs/2410.18978},
|
765 |
+
year={2024}
|
766 |
+
}
|
767 |
+
```
|
768 |
+
""")
|
769 |
+
|
770 |
+
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])
|
771 |
+
|
772 |
+
image_end_upload_button.upload(preprocess_image_end, image_end_upload_button, [input_image_end, last_frame_path, tracking_points])
|
773 |
+
|
774 |
+
add_drag_button.click(add_drag, tracking_points, [tracking_points, ])
|
775 |
+
|
776 |
+
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
|
777 |
+
|
778 |
+
delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
|
779 |
+
|
780 |
+
reset_button.click(reset_states, [first_frame_path, last_frame_path, tracking_points], [first_frame_path, last_frame_path, tracking_points])
|
781 |
+
|
782 |
+
input_image.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
|
783 |
+
|
784 |
+
input_image_end.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
|
785 |
+
|
786 |
+
run_button.click(Framer.run, [first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id], output_video)
|
787 |
+
|
788 |
+
demo.queue().launch()
|
assets/demos.gif
ADDED
Git LFS Details
|
gradio_demo/utils_drag.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding:utf-8 -*-
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import shutil
|
5 |
+
import logging
|
6 |
+
import colorlog
|
7 |
+
from tqdm import tqdm
|
8 |
+
import time
|
9 |
+
import yaml
|
10 |
+
import random
|
11 |
+
import importlib
|
12 |
+
from PIL import Image
|
13 |
+
from warnings import simplefilter
|
14 |
+
import imageio
|
15 |
+
import math
|
16 |
+
import collections
|
17 |
+
import json
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.optim import Adam
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
from torch.utils.data import DataLoader, Dataset
|
25 |
+
from einops import rearrange, repeat
|
26 |
+
import torch.distributed as dist
|
27 |
+
from torchvision import datasets, transforms, utils
|
28 |
+
|
29 |
+
logging.getLogger().setLevel(logging.WARNING)
|
30 |
+
simplefilter(action='ignore', category=FutureWarning)
|
31 |
+
|
32 |
+
|
33 |
+
def get_logger(filename=None):
|
34 |
+
"""
|
35 |
+
examples:
|
36 |
+
logger = get_logger('try_logging.txt')
|
37 |
+
|
38 |
+
logger.debug("Do something.")
|
39 |
+
logger.info("Start print log.")
|
40 |
+
logger.warning("Something maybe fail.")
|
41 |
+
try:
|
42 |
+
raise ValueError()
|
43 |
+
except ValueError:
|
44 |
+
logger.error("Error", exc_info=True)
|
45 |
+
|
46 |
+
tips:
|
47 |
+
DO NOT logger.inf(some big tensors since color may not helpful.)
|
48 |
+
"""
|
49 |
+
logger = logging.getLogger('utils')
|
50 |
+
level = logging.DEBUG
|
51 |
+
logger.setLevel(level=level)
|
52 |
+
# Use propagate to avoid multiple loggings.
|
53 |
+
logger.propagate = False
|
54 |
+
# Remove %(levelname)s since we have colorlog to represent levelname.
|
55 |
+
format_str = '[%(asctime)s <%(filename)s:%(lineno)d> %(funcName)s] %(message)s'
|
56 |
+
|
57 |
+
streamHandler = logging.StreamHandler()
|
58 |
+
streamHandler.setLevel(level)
|
59 |
+
coloredFormatter = colorlog.ColoredFormatter(
|
60 |
+
'%(log_color)s' + format_str,
|
61 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
62 |
+
reset=True,
|
63 |
+
log_colors={
|
64 |
+
'DEBUG': 'cyan',
|
65 |
+
# 'INFO': 'white',
|
66 |
+
'WARNING': 'yellow',
|
67 |
+
'ERROR': 'red',
|
68 |
+
'CRITICAL': 'reg,bg_white',
|
69 |
+
}
|
70 |
+
)
|
71 |
+
|
72 |
+
streamHandler.setFormatter(coloredFormatter)
|
73 |
+
logger.addHandler(streamHandler)
|
74 |
+
|
75 |
+
if filename:
|
76 |
+
fileHandler = logging.FileHandler(filename)
|
77 |
+
fileHandler.setLevel(level)
|
78 |
+
formatter = logging.Formatter(format_str)
|
79 |
+
fileHandler.setFormatter(formatter)
|
80 |
+
logger.addHandler(fileHandler)
|
81 |
+
|
82 |
+
# Fix multiple logging for torch.distributed
|
83 |
+
try:
|
84 |
+
class UniqueLogger:
|
85 |
+
def __init__(self, logger):
|
86 |
+
self.logger = logger
|
87 |
+
self.local_rank = torch.distributed.get_rank()
|
88 |
+
|
89 |
+
def info(self, msg, *args, **kwargs):
|
90 |
+
if self.local_rank == 0:
|
91 |
+
return self.logger.info(msg, *args, **kwargs)
|
92 |
+
|
93 |
+
def warning(self, msg, *args, **kwargs):
|
94 |
+
if self.local_rank == 0:
|
95 |
+
return self.logger.warning(msg, *args, **kwargs)
|
96 |
+
|
97 |
+
logger = UniqueLogger(logger)
|
98 |
+
# AssertionError for gpu with no distributed
|
99 |
+
# AttributeError for no gpu.
|
100 |
+
except Exception:
|
101 |
+
pass
|
102 |
+
return logger
|
103 |
+
|
104 |
+
|
105 |
+
logger = get_logger()
|
106 |
+
|
107 |
+
def split_filename(filename):
|
108 |
+
absname = os.path.abspath(filename)
|
109 |
+
dirname, basename = os.path.split(absname)
|
110 |
+
split_tmp = basename.rsplit('.', maxsplit=1)
|
111 |
+
if len(split_tmp) == 2:
|
112 |
+
rootname, extname = split_tmp
|
113 |
+
elif len(split_tmp) == 1:
|
114 |
+
rootname = split_tmp[0]
|
115 |
+
extname = None
|
116 |
+
else:
|
117 |
+
raise ValueError("programming error!")
|
118 |
+
return dirname, rootname, extname
|
119 |
+
|
120 |
+
def data2file(data, filename, type=None, override=False, printable=False, **kwargs):
|
121 |
+
dirname, rootname, extname = split_filename(filename)
|
122 |
+
print_did_not_save_flag = True
|
123 |
+
if type:
|
124 |
+
extname = type
|
125 |
+
if not os.path.exists(dirname):
|
126 |
+
os.makedirs(dirname, exist_ok=True)
|
127 |
+
|
128 |
+
if not os.path.exists(filename) or override:
|
129 |
+
if extname in ['jpg', 'png', 'jpeg']:
|
130 |
+
utils.save_image(data, filename, **kwargs)
|
131 |
+
elif extname == 'gif':
|
132 |
+
imageio.mimsave(filename, data, format='GIF', duration=kwargs.get('duration'), loop=0)
|
133 |
+
elif extname == 'txt':
|
134 |
+
if kwargs is None:
|
135 |
+
kwargs = {}
|
136 |
+
max_step = kwargs.get('max_step')
|
137 |
+
if max_step is None:
|
138 |
+
max_step = np.Infinity
|
139 |
+
|
140 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
141 |
+
for i, e in enumerate(data):
|
142 |
+
if i < max_step:
|
143 |
+
f.write(str(e) + '\n')
|
144 |
+
else:
|
145 |
+
break
|
146 |
+
else:
|
147 |
+
raise ValueError('Do not support this type')
|
148 |
+
if printable: logger.info('Saved data to %s' % os.path.abspath(filename))
|
149 |
+
else:
|
150 |
+
if print_did_not_save_flag: logger.info(
|
151 |
+
'Did not save data to %s because file exists and override is False' % os.path.abspath(
|
152 |
+
filename))
|
153 |
+
|
154 |
+
|
155 |
+
def file2data(filename, type=None, printable=True, **kwargs):
|
156 |
+
dirname, rootname, extname = split_filename(filename)
|
157 |
+
print_load_flag = True
|
158 |
+
if type:
|
159 |
+
extname = type
|
160 |
+
|
161 |
+
if extname in ['pth', 'ckpt']:
|
162 |
+
data = torch.load(filename, map_location=kwargs.get('map_location'))
|
163 |
+
elif extname == 'txt':
|
164 |
+
top = kwargs.get('top', None)
|
165 |
+
with open(filename, encoding='utf-8') as f:
|
166 |
+
if top:
|
167 |
+
data = [f.readline() for _ in range(top)]
|
168 |
+
else:
|
169 |
+
data = [e for e in f.read().split('\n') if e]
|
170 |
+
elif extname == 'yaml':
|
171 |
+
with open(filename, 'r') as f:
|
172 |
+
data = yaml.load(f)
|
173 |
+
else:
|
174 |
+
raise ValueError('type can only support h5, npy, json, txt')
|
175 |
+
if printable:
|
176 |
+
if print_load_flag:
|
177 |
+
logger.info('Loaded data from %s' % os.path.abspath(filename))
|
178 |
+
return data
|
179 |
+
|
180 |
+
|
181 |
+
def ensure_dirname(dirname, override=False):
|
182 |
+
if os.path.exists(dirname) and override:
|
183 |
+
logger.info('Removing dirname: %s' % os.path.abspath(dirname))
|
184 |
+
try:
|
185 |
+
shutil.rmtree(dirname)
|
186 |
+
except OSError as e:
|
187 |
+
raise ValueError('Failed to delete %s because %s' % (dirname, e))
|
188 |
+
|
189 |
+
if not os.path.exists(dirname):
|
190 |
+
logger.info('Making dirname: %s' % os.path.abspath(dirname))
|
191 |
+
os.makedirs(dirname, exist_ok=True)
|
192 |
+
|
193 |
+
|
194 |
+
def import_filename(filename):
|
195 |
+
spec = importlib.util.spec_from_file_location("mymodule", filename)
|
196 |
+
module = importlib.util.module_from_spec(spec)
|
197 |
+
sys.modules[spec.name] = module
|
198 |
+
spec.loader.exec_module(module)
|
199 |
+
return module
|
200 |
+
|
201 |
+
|
202 |
+
def adaptively_load_state_dict(target, state_dict):
|
203 |
+
target_dict = target.state_dict()
|
204 |
+
|
205 |
+
try:
|
206 |
+
common_dict = {k: v for k, v in state_dict.items() if k in target_dict and v.size() == target_dict[k].size()}
|
207 |
+
except Exception as e:
|
208 |
+
logger.warning('load error %s', e)
|
209 |
+
common_dict = {k: v for k, v in state_dict.items() if k in target_dict}
|
210 |
+
|
211 |
+
if 'param_groups' in common_dict and common_dict['param_groups'][0]['params'] != \
|
212 |
+
target.state_dict()['param_groups'][0]['params']:
|
213 |
+
logger.warning('Detected mismatch params, auto adapte state_dict to current')
|
214 |
+
common_dict['param_groups'][0]['params'] = target.state_dict()['param_groups'][0]['params']
|
215 |
+
target_dict.update(common_dict)
|
216 |
+
target.load_state_dict(target_dict)
|
217 |
+
|
218 |
+
missing_keys = [k for k in target_dict.keys() if k not in common_dict]
|
219 |
+
unexpected_keys = [k for k in state_dict.keys() if k not in common_dict]
|
220 |
+
|
221 |
+
if len(unexpected_keys) != 0:
|
222 |
+
logger.warning(
|
223 |
+
f"Some weights of state_dict were not used in target: {unexpected_keys}"
|
224 |
+
)
|
225 |
+
if len(missing_keys) != 0:
|
226 |
+
logger.warning(
|
227 |
+
f"Some weights of state_dict are missing used in target {missing_keys}"
|
228 |
+
)
|
229 |
+
if len(unexpected_keys) == 0 and len(missing_keys) == 0:
|
230 |
+
logger.warning("Strictly Loaded state_dict.")
|
231 |
+
|
232 |
+
|
233 |
+
def set_seed(seed=42):
|
234 |
+
random.seed(seed)
|
235 |
+
os.environ['PYHTONHASHSEED'] = str(seed)
|
236 |
+
np.random.seed(seed)
|
237 |
+
torch.manual_seed(seed)
|
238 |
+
torch.cuda.manual_seed(seed)
|
239 |
+
torch.backends.cudnn.deterministic = True
|
240 |
+
|
241 |
+
def image2pil(filename):
|
242 |
+
return Image.open(filename)
|
243 |
+
|
244 |
+
|
245 |
+
def image2arr(filename):
|
246 |
+
pil = image2pil(filename)
|
247 |
+
return pil2arr(pil)
|
248 |
+
|
249 |
+
|
250 |
+
def pil2arr(pil):
|
251 |
+
if isinstance(pil, list):
|
252 |
+
arr = np.array(
|
253 |
+
[np.array(e.convert('RGB').getdata(), dtype=np.uint8).reshape(e.size[1], e.size[0], 3) for e in pil])
|
254 |
+
else:
|
255 |
+
arr = np.array(pil)
|
256 |
+
return arr
|
257 |
+
|
258 |
+
|
259 |
+
def arr2pil(arr):
|
260 |
+
if arr.ndim == 3:
|
261 |
+
return Image.fromarray(arr.astype('uint8'), 'RGB')
|
262 |
+
elif arr.ndim == 4:
|
263 |
+
return [Image.fromarray(e.astype('uint8'), 'RGB') for e in list(arr)]
|
264 |
+
else:
|
265 |
+
raise ValueError('arr must has ndim of 3 or 4, but got %s' % arr.ndim)
|
266 |
+
|
267 |
+
|
268 |
+
def notebook_show(*images):
|
269 |
+
from IPython.display import Image
|
270 |
+
from IPython.display import display
|
271 |
+
display(*[Image(e) for e in images])
|
models_diffusers/attention.py
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from torch import nn
|
18 |
+
|
19 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
20 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
21 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
22 |
+
# from diffusers.models.attention_processor import Attention
|
23 |
+
from models_diffusers.attention_processor import Attention
|
24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
26 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
27 |
+
|
28 |
+
|
29 |
+
def _chunked_feed_forward(
|
30 |
+
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
|
31 |
+
):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
if lora_scale is None:
|
40 |
+
ff_output = torch.cat(
|
41 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
42 |
+
dim=chunk_dim,
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
|
46 |
+
ff_output = torch.cat(
|
47 |
+
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
48 |
+
dim=chunk_dim,
|
49 |
+
)
|
50 |
+
|
51 |
+
return ff_output
|
52 |
+
|
53 |
+
|
54 |
+
@maybe_allow_in_graph
|
55 |
+
class GatedSelfAttentionDense(nn.Module):
|
56 |
+
r"""
|
57 |
+
A gated self-attention dense layer that combines visual features and object features.
|
58 |
+
|
59 |
+
Parameters:
|
60 |
+
query_dim (`int`): The number of channels in the query.
|
61 |
+
context_dim (`int`): The number of channels in the context.
|
62 |
+
n_heads (`int`): The number of heads to use for attention.
|
63 |
+
d_head (`int`): The number of channels in each head.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
70 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
71 |
+
|
72 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
73 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
74 |
+
|
75 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
76 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
77 |
+
|
78 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
79 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
80 |
+
|
81 |
+
self.enabled = True
|
82 |
+
|
83 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
84 |
+
if not self.enabled:
|
85 |
+
return x
|
86 |
+
|
87 |
+
n_visual = x.shape[1]
|
88 |
+
objs = self.linear(objs)
|
89 |
+
|
90 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
91 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
92 |
+
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
@maybe_allow_in_graph
|
97 |
+
class BasicTransformerBlock(nn.Module):
|
98 |
+
r"""
|
99 |
+
A basic Transformer block.
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
dim (`int`): The number of channels in the input and output.
|
103 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
104 |
+
attention_head_dim (`int`): The number of channels in each head.
|
105 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
106 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
107 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
108 |
+
num_embeds_ada_norm (:
|
109 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
110 |
+
attention_bias (:
|
111 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
112 |
+
only_cross_attention (`bool`, *optional*):
|
113 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
114 |
+
double_self_attention (`bool`, *optional*):
|
115 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
116 |
+
upcast_attention (`bool`, *optional*):
|
117 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
118 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
119 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
120 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
121 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
122 |
+
final_dropout (`bool` *optional*, defaults to False):
|
123 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
124 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
125 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
126 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
127 |
+
The type of positional embeddings to apply to.
|
128 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
129 |
+
The maximum number of positional embeddings to apply.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
dim: int,
|
135 |
+
num_attention_heads: int,
|
136 |
+
attention_head_dim: int,
|
137 |
+
dropout=0.0,
|
138 |
+
cross_attention_dim: Optional[int] = None,
|
139 |
+
activation_fn: str = "geglu",
|
140 |
+
num_embeds_ada_norm: Optional[int] = None,
|
141 |
+
attention_bias: bool = False,
|
142 |
+
only_cross_attention: bool = False,
|
143 |
+
double_self_attention: bool = False,
|
144 |
+
upcast_attention: bool = False,
|
145 |
+
norm_elementwise_affine: bool = True,
|
146 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
147 |
+
norm_eps: float = 1e-5,
|
148 |
+
final_dropout: bool = False,
|
149 |
+
attention_type: str = "default",
|
150 |
+
positional_embeddings: Optional[str] = None,
|
151 |
+
num_positional_embeddings: Optional[int] = None,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
self.only_cross_attention = only_cross_attention
|
155 |
+
|
156 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
157 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
158 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
159 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
160 |
+
|
161 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
162 |
+
raise ValueError(
|
163 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
164 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
165 |
+
)
|
166 |
+
|
167 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
168 |
+
raise ValueError(
|
169 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
170 |
+
)
|
171 |
+
|
172 |
+
if positional_embeddings == "sinusoidal":
|
173 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
174 |
+
else:
|
175 |
+
self.pos_embed = None
|
176 |
+
|
177 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
178 |
+
# 1. Self-Attn
|
179 |
+
if self.use_ada_layer_norm:
|
180 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
181 |
+
elif self.use_ada_layer_norm_zero:
|
182 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
183 |
+
else:
|
184 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
185 |
+
|
186 |
+
self.attn1 = Attention(
|
187 |
+
query_dim=dim,
|
188 |
+
heads=num_attention_heads,
|
189 |
+
dim_head=attention_head_dim,
|
190 |
+
dropout=dropout,
|
191 |
+
bias=attention_bias,
|
192 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
193 |
+
upcast_attention=upcast_attention,
|
194 |
+
)
|
195 |
+
|
196 |
+
# 2. Cross-Attn
|
197 |
+
if cross_attention_dim is not None or double_self_attention:
|
198 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
199 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
200 |
+
# the second cross attention block.
|
201 |
+
self.norm2 = (
|
202 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
203 |
+
if self.use_ada_layer_norm
|
204 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
205 |
+
)
|
206 |
+
self.attn2 = Attention(
|
207 |
+
query_dim=dim,
|
208 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
209 |
+
heads=num_attention_heads,
|
210 |
+
dim_head=attention_head_dim,
|
211 |
+
dropout=dropout,
|
212 |
+
bias=attention_bias,
|
213 |
+
upcast_attention=upcast_attention,
|
214 |
+
) # is self-attn if encoder_hidden_states is none
|
215 |
+
else:
|
216 |
+
self.norm2 = None
|
217 |
+
self.attn2 = None
|
218 |
+
|
219 |
+
# 3. Feed-forward
|
220 |
+
if not self.use_ada_layer_norm_single:
|
221 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
222 |
+
|
223 |
+
self.ff = FeedForward(
|
224 |
+
dim,
|
225 |
+
dropout=dropout,
|
226 |
+
activation_fn=activation_fn,
|
227 |
+
final_dropout=final_dropout,
|
228 |
+
)
|
229 |
+
|
230 |
+
# 4. Fuser
|
231 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
232 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
233 |
+
|
234 |
+
# 5. Scale-shift for PixArt-Alpha.
|
235 |
+
if self.use_ada_layer_norm_single:
|
236 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
237 |
+
|
238 |
+
# let chunk size default to None
|
239 |
+
self._chunk_size = None
|
240 |
+
self._chunk_dim = 0
|
241 |
+
|
242 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
243 |
+
# Sets chunk feed-forward
|
244 |
+
self._chunk_size = chunk_size
|
245 |
+
self._chunk_dim = dim
|
246 |
+
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states: torch.FloatTensor,
|
250 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
251 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
252 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
253 |
+
timestep: Optional[torch.LongTensor] = None,
|
254 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
255 |
+
class_labels: Optional[torch.LongTensor] = None,
|
256 |
+
) -> torch.FloatTensor:
|
257 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
258 |
+
# 0. Self-Attention
|
259 |
+
batch_size = hidden_states.shape[0]
|
260 |
+
|
261 |
+
if self.use_ada_layer_norm:
|
262 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
263 |
+
elif self.use_ada_layer_norm_zero:
|
264 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
265 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
266 |
+
)
|
267 |
+
elif self.use_layer_norm:
|
268 |
+
norm_hidden_states = self.norm1(hidden_states)
|
269 |
+
elif self.use_ada_layer_norm_single:
|
270 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
271 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
272 |
+
).chunk(6, dim=1)
|
273 |
+
norm_hidden_states = self.norm1(hidden_states)
|
274 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
275 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
276 |
+
else:
|
277 |
+
raise ValueError("Incorrect norm used")
|
278 |
+
|
279 |
+
if self.pos_embed is not None:
|
280 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
281 |
+
|
282 |
+
# 1. Retrieve lora scale.
|
283 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
284 |
+
|
285 |
+
# 2. Prepare GLIGEN inputs
|
286 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
287 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
288 |
+
|
289 |
+
attn_output = self.attn1(
|
290 |
+
norm_hidden_states,
|
291 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
292 |
+
attention_mask=attention_mask,
|
293 |
+
**cross_attention_kwargs,
|
294 |
+
)
|
295 |
+
if self.use_ada_layer_norm_zero:
|
296 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
297 |
+
elif self.use_ada_layer_norm_single:
|
298 |
+
attn_output = gate_msa * attn_output
|
299 |
+
|
300 |
+
hidden_states = attn_output + hidden_states
|
301 |
+
if hidden_states.ndim == 4:
|
302 |
+
hidden_states = hidden_states.squeeze(1)
|
303 |
+
|
304 |
+
# 2.5 GLIGEN Control
|
305 |
+
if gligen_kwargs is not None:
|
306 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
307 |
+
|
308 |
+
# 3. Cross-Attention
|
309 |
+
if self.attn2 is not None:
|
310 |
+
if self.use_ada_layer_norm:
|
311 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
312 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
313 |
+
norm_hidden_states = self.norm2(hidden_states)
|
314 |
+
elif self.use_ada_layer_norm_single:
|
315 |
+
# For PixArt norm2 isn't applied here:
|
316 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
317 |
+
norm_hidden_states = hidden_states
|
318 |
+
else:
|
319 |
+
raise ValueError("Incorrect norm")
|
320 |
+
|
321 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
322 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
323 |
+
|
324 |
+
attn_output = self.attn2(
|
325 |
+
norm_hidden_states,
|
326 |
+
encoder_hidden_states=encoder_hidden_states,
|
327 |
+
attention_mask=encoder_attention_mask,
|
328 |
+
**cross_attention_kwargs,
|
329 |
+
)
|
330 |
+
hidden_states = attn_output + hidden_states
|
331 |
+
|
332 |
+
# 4. Feed-forward
|
333 |
+
if not self.use_ada_layer_norm_single:
|
334 |
+
norm_hidden_states = self.norm3(hidden_states)
|
335 |
+
|
336 |
+
if self.use_ada_layer_norm_zero:
|
337 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
338 |
+
|
339 |
+
if self.use_ada_layer_norm_single:
|
340 |
+
norm_hidden_states = self.norm2(hidden_states)
|
341 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
342 |
+
|
343 |
+
if self._chunk_size is not None:
|
344 |
+
# "feed_forward_chunk_size" can be used to save memory
|
345 |
+
ff_output = _chunked_feed_forward(
|
346 |
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
350 |
+
|
351 |
+
if self.use_ada_layer_norm_zero:
|
352 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
353 |
+
elif self.use_ada_layer_norm_single:
|
354 |
+
ff_output = gate_mlp * ff_output
|
355 |
+
|
356 |
+
hidden_states = ff_output + hidden_states
|
357 |
+
if hidden_states.ndim == 4:
|
358 |
+
hidden_states = hidden_states.squeeze(1)
|
359 |
+
|
360 |
+
return hidden_states
|
361 |
+
|
362 |
+
|
363 |
+
@maybe_allow_in_graph
|
364 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
365 |
+
r"""
|
366 |
+
A basic Transformer block for video like data.
|
367 |
+
|
368 |
+
Parameters:
|
369 |
+
dim (`int`): The number of channels in the input and output.
|
370 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
371 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
372 |
+
attention_head_dim (`int`): The number of channels in each head.
|
373 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
374 |
+
"""
|
375 |
+
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
dim: int,
|
379 |
+
time_mix_inner_dim: int,
|
380 |
+
num_attention_heads: int,
|
381 |
+
attention_head_dim: int,
|
382 |
+
cross_attention_dim: Optional[int] = None,
|
383 |
+
):
|
384 |
+
super().__init__()
|
385 |
+
self.is_res = dim == time_mix_inner_dim
|
386 |
+
|
387 |
+
self.norm_in = nn.LayerNorm(dim)
|
388 |
+
|
389 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
390 |
+
# 1. Self-Attn
|
391 |
+
self.norm_in = nn.LayerNorm(dim)
|
392 |
+
self.ff_in = FeedForward(
|
393 |
+
dim,
|
394 |
+
dim_out=time_mix_inner_dim,
|
395 |
+
activation_fn="geglu",
|
396 |
+
)
|
397 |
+
|
398 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
399 |
+
self.attn1 = Attention(
|
400 |
+
query_dim=time_mix_inner_dim,
|
401 |
+
heads=num_attention_heads,
|
402 |
+
dim_head=attention_head_dim,
|
403 |
+
cross_attention_dim=None,
|
404 |
+
)
|
405 |
+
|
406 |
+
# 2. Cross-Attn
|
407 |
+
if cross_attention_dim is not None:
|
408 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
409 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
410 |
+
# the second cross attention block.
|
411 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
412 |
+
self.attn2 = Attention(
|
413 |
+
query_dim=time_mix_inner_dim,
|
414 |
+
cross_attention_dim=cross_attention_dim,
|
415 |
+
heads=num_attention_heads,
|
416 |
+
dim_head=attention_head_dim,
|
417 |
+
) # is self-attn if encoder_hidden_states is none
|
418 |
+
else:
|
419 |
+
self.norm2 = None
|
420 |
+
self.attn2 = None
|
421 |
+
|
422 |
+
# 3. Feed-forward
|
423 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
424 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
425 |
+
|
426 |
+
# let chunk size default to None
|
427 |
+
self._chunk_size = None
|
428 |
+
self._chunk_dim = None
|
429 |
+
|
430 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
431 |
+
# Sets chunk feed-forward
|
432 |
+
self._chunk_size = chunk_size
|
433 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
434 |
+
self._chunk_dim = 1
|
435 |
+
|
436 |
+
def forward(
|
437 |
+
self,
|
438 |
+
hidden_states: torch.FloatTensor,
|
439 |
+
num_frames: int,
|
440 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
441 |
+
) -> torch.FloatTensor:
|
442 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
443 |
+
# 0. Self-Attention
|
444 |
+
batch_size = hidden_states.shape[0]
|
445 |
+
|
446 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
447 |
+
batch_size = batch_frames // num_frames
|
448 |
+
|
449 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
450 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
451 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
452 |
+
|
453 |
+
residual = hidden_states
|
454 |
+
hidden_states = self.norm_in(hidden_states)
|
455 |
+
|
456 |
+
if self._chunk_size is not None:
|
457 |
+
hidden_states = _chunked_feed_forward(self.ff, hidden_states, self._chunk_dim, self._chunk_size)
|
458 |
+
else:
|
459 |
+
hidden_states = self.ff_in(hidden_states)
|
460 |
+
|
461 |
+
if self.is_res:
|
462 |
+
hidden_states = hidden_states + residual
|
463 |
+
|
464 |
+
norm_hidden_states = self.norm1(hidden_states)
|
465 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
466 |
+
hidden_states = attn_output + hidden_states
|
467 |
+
|
468 |
+
# 3. Cross-Attention
|
469 |
+
if self.attn2 is not None:
|
470 |
+
norm_hidden_states = self.norm2(hidden_states)
|
471 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
472 |
+
hidden_states = attn_output + hidden_states
|
473 |
+
|
474 |
+
# 4. Feed-forward
|
475 |
+
norm_hidden_states = self.norm3(hidden_states)
|
476 |
+
|
477 |
+
if self._chunk_size is not None:
|
478 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
479 |
+
else:
|
480 |
+
ff_output = self.ff(norm_hidden_states)
|
481 |
+
|
482 |
+
if self.is_res:
|
483 |
+
hidden_states = ff_output + hidden_states
|
484 |
+
else:
|
485 |
+
hidden_states = ff_output
|
486 |
+
|
487 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
488 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
489 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
490 |
+
|
491 |
+
return hidden_states
|
492 |
+
|
493 |
+
|
494 |
+
class FeedForward(nn.Module):
|
495 |
+
r"""
|
496 |
+
A feed-forward layer.
|
497 |
+
|
498 |
+
Parameters:
|
499 |
+
dim (`int`): The number of channels in the input.
|
500 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
501 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
502 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
503 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
504 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
505 |
+
"""
|
506 |
+
|
507 |
+
def __init__(
|
508 |
+
self,
|
509 |
+
dim: int,
|
510 |
+
dim_out: Optional[int] = None,
|
511 |
+
mult: int = 4,
|
512 |
+
dropout: float = 0.0,
|
513 |
+
activation_fn: str = "geglu",
|
514 |
+
final_dropout: bool = False,
|
515 |
+
):
|
516 |
+
super().__init__()
|
517 |
+
inner_dim = int(dim * mult)
|
518 |
+
dim_out = dim_out if dim_out is not None else dim
|
519 |
+
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
520 |
+
|
521 |
+
if activation_fn == "gelu":
|
522 |
+
act_fn = GELU(dim, inner_dim)
|
523 |
+
if activation_fn == "gelu-approximate":
|
524 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
525 |
+
elif activation_fn == "geglu":
|
526 |
+
act_fn = GEGLU(dim, inner_dim)
|
527 |
+
elif activation_fn == "geglu-approximate":
|
528 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
529 |
+
|
530 |
+
self.net = nn.ModuleList([])
|
531 |
+
# project in
|
532 |
+
self.net.append(act_fn)
|
533 |
+
# project dropout
|
534 |
+
self.net.append(nn.Dropout(dropout))
|
535 |
+
# project out
|
536 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
537 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
538 |
+
if final_dropout:
|
539 |
+
self.net.append(nn.Dropout(dropout))
|
540 |
+
|
541 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
542 |
+
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
543 |
+
for module in self.net:
|
544 |
+
if isinstance(module, compatible_cls):
|
545 |
+
hidden_states = module(hidden_states, scale)
|
546 |
+
else:
|
547 |
+
hidden_states = module(hidden_states)
|
548 |
+
return hidden_states
|
models_diffusers/attention_processor.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models_diffusers/controlnet_svd.py
ADDED
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import FromOriginalControlnetMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
# from diffusers.models.attention_processor import (
|
25 |
+
from models_diffusers.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
33 |
+
from diffusers.models.modeling_utils import ModelMixin
|
34 |
+
# from diffusers.models.unet_3d_blocks import get_down_block, get_up_block, UNetMidBlockSpatioTemporal
|
35 |
+
from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
|
36 |
+
from diffusers.models import UNetSpatioTemporalConditionModel
|
37 |
+
from einops import rearrange
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
+
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class ControlNetOutput(BaseOutput):
|
45 |
+
"""
|
46 |
+
The output of [`ControlNetModel`].
|
47 |
+
|
48 |
+
Args:
|
49 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
50 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
51 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
52 |
+
used to condition the original UNet's downsampling activations.
|
53 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
54 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
55 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
56 |
+
Output can be used to condition the original UNet's middle block activation.
|
57 |
+
"""
|
58 |
+
|
59 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
60 |
+
mid_block_res_sample: torch.Tensor
|
61 |
+
|
62 |
+
|
63 |
+
class ControlNetConditioningEmbeddingSVD(nn.Module):
|
64 |
+
"""
|
65 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
66 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
67 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
68 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
69 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
70 |
+
model) to encode image-space conditions ... into feature maps ..."
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
conditioning_embedding_channels: int,
|
76 |
+
conditioning_channels: int = 3,
|
77 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
78 |
+
with_id_feature: bool = False,
|
79 |
+
feature_channels: int = 160,
|
80 |
+
feature_out_channels: Tuple[int, ...] = (160, 160, 256, 256),
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
85 |
+
|
86 |
+
self.blocks = nn.ModuleList([])
|
87 |
+
|
88 |
+
for i in range(len(block_out_channels) - 1):
|
89 |
+
channel_in = block_out_channels[i]
|
90 |
+
channel_out = block_out_channels[i + 1]
|
91 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
92 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
93 |
+
|
94 |
+
self.conv_out = zero_module(
|
95 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
96 |
+
)
|
97 |
+
|
98 |
+
self.with_id_feature = with_id_feature
|
99 |
+
|
100 |
+
def forward(self, conditioning, point_embedding=None, point_tracks=None):
|
101 |
+
#this seeems appropriate? idk if i should be applying a more complex setup to handle the frames
|
102 |
+
#combine batch and frames dimensions
|
103 |
+
batch_size, frames, channels, height, width = conditioning.size()
|
104 |
+
conditioning = conditioning.view(batch_size * frames, channels, height, width)
|
105 |
+
|
106 |
+
embedding = self.conv_in(conditioning)
|
107 |
+
embedding = F.silu(embedding)
|
108 |
+
|
109 |
+
for block in self.blocks:
|
110 |
+
embedding = block(embedding)
|
111 |
+
embedding = F.silu(embedding)
|
112 |
+
|
113 |
+
embedding = self.conv_out(embedding)
|
114 |
+
|
115 |
+
assert not self.with_id_feature
|
116 |
+
|
117 |
+
return embedding
|
118 |
+
|
119 |
+
|
120 |
+
class ControlNetSVDModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
121 |
+
r"""
|
122 |
+
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
|
123 |
+
shaped output.
|
124 |
+
|
125 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
126 |
+
for all models (such as downloading or saving).
|
127 |
+
|
128 |
+
Parameters:
|
129 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
130 |
+
Height and width of input/output sample.
|
131 |
+
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
|
132 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
133 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
|
134 |
+
The tuple of downsample blocks to use.
|
135 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
|
136 |
+
The tuple of upsample blocks to use.
|
137 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
138 |
+
The tuple of output channels for each block.
|
139 |
+
addition_time_embed_dim: (`int`, defaults to 256):
|
140 |
+
Dimension to to encode the additional time ids.
|
141 |
+
projection_class_embeddings_input_dim (`int`, defaults to 768):
|
142 |
+
The dimension of the projection of encoded `added_time_ids`.
|
143 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
144 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
145 |
+
The dimension of the cross attention features.
|
146 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
147 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
148 |
+
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
|
149 |
+
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
|
150 |
+
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
|
151 |
+
The number of attention heads.
|
152 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
153 |
+
"""
|
154 |
+
|
155 |
+
_supports_gradient_checkpointing = True
|
156 |
+
|
157 |
+
@register_to_config
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
sample_size: Optional[int] = None,
|
161 |
+
in_channels: int = 8,
|
162 |
+
out_channels: int = 4,
|
163 |
+
down_block_types: Tuple[str] = (
|
164 |
+
"CrossAttnDownBlockSpatioTemporal",
|
165 |
+
"CrossAttnDownBlockSpatioTemporal",
|
166 |
+
"CrossAttnDownBlockSpatioTemporal",
|
167 |
+
"DownBlockSpatioTemporal",
|
168 |
+
),
|
169 |
+
up_block_types: Tuple[str] = (
|
170 |
+
"UpBlockSpatioTemporal",
|
171 |
+
"CrossAttnUpBlockSpatioTemporal",
|
172 |
+
"CrossAttnUpBlockSpatioTemporal",
|
173 |
+
"CrossAttnUpBlockSpatioTemporal",
|
174 |
+
),
|
175 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
176 |
+
addition_time_embed_dim: int = 256,
|
177 |
+
projection_class_embeddings_input_dim: int = 768,
|
178 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
179 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1024,
|
180 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
181 |
+
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20),
|
182 |
+
num_frames: int = 14,
|
183 |
+
conditioning_channels: int = 3,
|
184 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
185 |
+
# NOTE: adapter for dift feature
|
186 |
+
with_id_feature: bool = False,
|
187 |
+
feature_channels: int = 160,
|
188 |
+
feature_out_channels: Tuple[int, ...] = (160, 160, 256, 256),
|
189 |
+
):
|
190 |
+
super().__init__()
|
191 |
+
self.sample_size = sample_size
|
192 |
+
|
193 |
+
print("layers per block is", layers_per_block)
|
194 |
+
|
195 |
+
# Check inputs
|
196 |
+
if len(down_block_types) != len(up_block_types):
|
197 |
+
raise ValueError(
|
198 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
199 |
+
)
|
200 |
+
|
201 |
+
if len(block_out_channels) != len(down_block_types):
|
202 |
+
raise ValueError(
|
203 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
204 |
+
)
|
205 |
+
|
206 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
207 |
+
raise ValueError(
|
208 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
209 |
+
)
|
210 |
+
|
211 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
212 |
+
raise ValueError(
|
213 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
214 |
+
)
|
215 |
+
|
216 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
217 |
+
raise ValueError(
|
218 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
219 |
+
)
|
220 |
+
|
221 |
+
# input
|
222 |
+
self.conv_in = nn.Conv2d(
|
223 |
+
in_channels,
|
224 |
+
block_out_channels[0],
|
225 |
+
kernel_size=3,
|
226 |
+
padding=1,
|
227 |
+
)
|
228 |
+
|
229 |
+
# time
|
230 |
+
time_embed_dim = block_out_channels[0] * 4
|
231 |
+
|
232 |
+
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
|
233 |
+
timestep_input_dim = block_out_channels[0]
|
234 |
+
|
235 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
236 |
+
|
237 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
|
238 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
239 |
+
|
240 |
+
self.down_blocks = nn.ModuleList([])
|
241 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
242 |
+
|
243 |
+
if isinstance(num_attention_heads, int):
|
244 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
245 |
+
|
246 |
+
if isinstance(cross_attention_dim, int):
|
247 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
248 |
+
|
249 |
+
if isinstance(layers_per_block, int):
|
250 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
251 |
+
|
252 |
+
if isinstance(transformer_layers_per_block, int):
|
253 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
254 |
+
|
255 |
+
blocks_time_embed_dim = time_embed_dim
|
256 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbeddingSVD(
|
257 |
+
conditioning_embedding_channels=block_out_channels[0],
|
258 |
+
block_out_channels=conditioning_embedding_out_channels,
|
259 |
+
conditioning_channels=conditioning_channels,
|
260 |
+
# optionally with point feature for conditioning
|
261 |
+
with_id_feature=with_id_feature,
|
262 |
+
feature_channels=feature_channels,
|
263 |
+
feature_out_channels=feature_out_channels,
|
264 |
+
)
|
265 |
+
|
266 |
+
# down
|
267 |
+
output_channel = block_out_channels[0]
|
268 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
269 |
+
controlnet_block = zero_module(controlnet_block)
|
270 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
271 |
+
|
272 |
+
for i, down_block_type in enumerate(down_block_types):
|
273 |
+
input_channel = output_channel
|
274 |
+
output_channel = block_out_channels[i]
|
275 |
+
is_final_block = i == len(block_out_channels) - 1
|
276 |
+
|
277 |
+
down_block = get_down_block(
|
278 |
+
down_block_type,
|
279 |
+
num_layers=layers_per_block[i],
|
280 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
281 |
+
in_channels=input_channel,
|
282 |
+
out_channels=output_channel,
|
283 |
+
temb_channels=blocks_time_embed_dim,
|
284 |
+
add_downsample=not is_final_block,
|
285 |
+
resnet_eps=1e-5,
|
286 |
+
cross_attention_dim=cross_attention_dim[i],
|
287 |
+
num_attention_heads=num_attention_heads[i],
|
288 |
+
resnet_act_fn="silu",
|
289 |
+
)
|
290 |
+
self.down_blocks.append(down_block)
|
291 |
+
|
292 |
+
for _ in range(layers_per_block[i]):
|
293 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
294 |
+
controlnet_block = zero_module(controlnet_block)
|
295 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
296 |
+
|
297 |
+
if not is_final_block:
|
298 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
299 |
+
controlnet_block = zero_module(controlnet_block)
|
300 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
301 |
+
|
302 |
+
# mid
|
303 |
+
mid_block_channel = block_out_channels[-1]
|
304 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
305 |
+
controlnet_block = zero_module(controlnet_block)
|
306 |
+
self.controlnet_mid_block = controlnet_block
|
307 |
+
|
308 |
+
self.mid_block = UNetMidBlockSpatioTemporal(
|
309 |
+
block_out_channels[-1],
|
310 |
+
temb_channels=blocks_time_embed_dim,
|
311 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
312 |
+
cross_attention_dim=cross_attention_dim[-1],
|
313 |
+
num_attention_heads=num_attention_heads[-1],
|
314 |
+
)
|
315 |
+
|
316 |
+
# # out
|
317 |
+
# self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
|
318 |
+
# self.conv_act = nn.SiLU()
|
319 |
+
|
320 |
+
# self.conv_out = nn.Conv2d(
|
321 |
+
# block_out_channels[0],
|
322 |
+
# out_channels,
|
323 |
+
# kernel_size=3,
|
324 |
+
# padding=1,
|
325 |
+
# )
|
326 |
+
|
327 |
+
@property
|
328 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
329 |
+
r"""
|
330 |
+
Returns:
|
331 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
332 |
+
indexed by its weight name.
|
333 |
+
"""
|
334 |
+
# set recursively
|
335 |
+
processors = {}
|
336 |
+
|
337 |
+
def fn_recursive_add_processors(
|
338 |
+
name: str,
|
339 |
+
module: torch.nn.Module,
|
340 |
+
processors: Dict[str, AttentionProcessor],
|
341 |
+
):
|
342 |
+
if hasattr(module, "get_processor"):
|
343 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
344 |
+
|
345 |
+
for sub_name, child in module.named_children():
|
346 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
347 |
+
|
348 |
+
return processors
|
349 |
+
|
350 |
+
for name, module in self.named_children():
|
351 |
+
fn_recursive_add_processors(name, module, processors)
|
352 |
+
|
353 |
+
return processors
|
354 |
+
|
355 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
356 |
+
r"""
|
357 |
+
Sets the attention processor to use to compute attention.
|
358 |
+
|
359 |
+
Parameters:
|
360 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
361 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
362 |
+
for **all** `Attention` layers.
|
363 |
+
|
364 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
365 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
366 |
+
|
367 |
+
"""
|
368 |
+
count = len(self.attn_processors.keys())
|
369 |
+
|
370 |
+
if isinstance(processor, dict) and len(processor) != count:
|
371 |
+
raise ValueError(
|
372 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
373 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
374 |
+
)
|
375 |
+
|
376 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
377 |
+
if hasattr(module, "set_processor"):
|
378 |
+
if not isinstance(processor, dict):
|
379 |
+
module.set_processor(processor)
|
380 |
+
else:
|
381 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
382 |
+
|
383 |
+
for sub_name, child in module.named_children():
|
384 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
385 |
+
|
386 |
+
for name, module in self.named_children():
|
387 |
+
fn_recursive_attn_processor(name, module, processor)
|
388 |
+
|
389 |
+
def set_default_attn_processor(self):
|
390 |
+
"""
|
391 |
+
Disables custom attention processors and sets the default attention implementation.
|
392 |
+
"""
|
393 |
+
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
394 |
+
processor = AttnProcessor()
|
395 |
+
else:
|
396 |
+
raise ValueError(
|
397 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
398 |
+
)
|
399 |
+
|
400 |
+
self.set_attn_processor(processor)
|
401 |
+
|
402 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
403 |
+
if hasattr(module, "gradient_checkpointing"):
|
404 |
+
module.gradient_checkpointing = value
|
405 |
+
|
406 |
+
# Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
407 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
408 |
+
"""
|
409 |
+
Sets the attention processor to use [feed forward
|
410 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
411 |
+
|
412 |
+
Parameters:
|
413 |
+
chunk_size (`int`, *optional*):
|
414 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
415 |
+
over each tensor of dim=`dim`.
|
416 |
+
dim (`int`, *optional*, defaults to `0`):
|
417 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
418 |
+
or dim=1 (sequence length).
|
419 |
+
"""
|
420 |
+
if dim not in [0, 1]:
|
421 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
422 |
+
|
423 |
+
# By default chunk size is 1
|
424 |
+
chunk_size = chunk_size or 1
|
425 |
+
|
426 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
427 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
428 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
429 |
+
|
430 |
+
for child in module.children():
|
431 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
432 |
+
|
433 |
+
for module in self.children():
|
434 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
435 |
+
|
436 |
+
def forward(
|
437 |
+
self,
|
438 |
+
sample: torch.FloatTensor,
|
439 |
+
timestep: Union[torch.Tensor, float, int],
|
440 |
+
encoder_hidden_states: torch.Tensor,
|
441 |
+
added_time_ids: torch.Tensor,
|
442 |
+
controlnet_cond: torch.FloatTensor = None,
|
443 |
+
point_embedding: torch.FloatTensor = None,
|
444 |
+
point_tracks: torch.FloatTensor = None,
|
445 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
446 |
+
return_dict: bool = True,
|
447 |
+
guess_mode: bool = False,
|
448 |
+
conditioning_scale: float = 1.0,
|
449 |
+
) -> Union[ControlNetOutput, Tuple]:
|
450 |
+
r"""
|
451 |
+
The [`UNetSpatioTemporalConditionModel`] forward method.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
sample (`torch.FloatTensor`):
|
455 |
+
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
|
456 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
457 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
458 |
+
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
|
459 |
+
added_time_ids: (`torch.FloatTensor`):
|
460 |
+
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
|
461 |
+
embeddings and added to the time embeddings.
|
462 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
463 |
+
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
|
464 |
+
tuple.
|
465 |
+
Returns:
|
466 |
+
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
|
467 |
+
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
|
468 |
+
a `tuple` is returned where the first element is the sample tensor.
|
469 |
+
"""
|
470 |
+
# 1. time
|
471 |
+
timesteps = timestep
|
472 |
+
if not torch.is_tensor(timesteps):
|
473 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
474 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
475 |
+
is_mps = sample.device.type == "mps"
|
476 |
+
if isinstance(timestep, float):
|
477 |
+
dtype = torch.float32 if is_mps else torch.float64
|
478 |
+
else:
|
479 |
+
dtype = torch.int32 if is_mps else torch.int64
|
480 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
481 |
+
elif len(timesteps.shape) == 0:
|
482 |
+
timesteps = timesteps[None].to(sample.device)
|
483 |
+
|
484 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
485 |
+
batch_size, num_frames = sample.shape[:2]
|
486 |
+
timesteps = timesteps.expand(batch_size)
|
487 |
+
|
488 |
+
t_emb = self.time_proj(timesteps)
|
489 |
+
|
490 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
491 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
492 |
+
# there might be better ways to encapsulate this.
|
493 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
494 |
+
|
495 |
+
emb = self.time_embedding(t_emb)
|
496 |
+
|
497 |
+
time_embeds = self.add_time_proj(added_time_ids.flatten())
|
498 |
+
time_embeds = time_embeds.reshape((batch_size, -1))
|
499 |
+
time_embeds = time_embeds.to(emb.dtype)
|
500 |
+
aug_emb = self.add_embedding(time_embeds)
|
501 |
+
emb = emb + aug_emb
|
502 |
+
|
503 |
+
# Flatten the batch and frames dimensions
|
504 |
+
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
|
505 |
+
sample = sample.flatten(0, 1)
|
506 |
+
# Repeat the embeddings num_video_frames times
|
507 |
+
# emb: [batch, channels] -> [batch * frames, channels]
|
508 |
+
emb = emb.repeat_interleave(num_frames, dim=0)
|
509 |
+
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
|
510 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
|
511 |
+
|
512 |
+
# 2. pre-process
|
513 |
+
sample = self.conv_in(sample)
|
514 |
+
|
515 |
+
# controlnet cond
|
516 |
+
if controlnet_cond != None:
|
517 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond, point_embedding=point_embedding, point_tracks=point_tracks)
|
518 |
+
sample = sample + controlnet_cond
|
519 |
+
|
520 |
+
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
|
521 |
+
|
522 |
+
down_block_res_samples = (sample,)
|
523 |
+
for downsample_block in self.down_blocks:
|
524 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
525 |
+
# print('has_cross_attention', type(downsample_block))
|
526 |
+
# models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal
|
527 |
+
|
528 |
+
sample, res_samples = downsample_block(
|
529 |
+
hidden_states=sample,
|
530 |
+
temb=emb,
|
531 |
+
encoder_hidden_states=encoder_hidden_states,
|
532 |
+
image_only_indicator=image_only_indicator,
|
533 |
+
)
|
534 |
+
else:
|
535 |
+
# print('no_cross_attention', type(downsample_block))
|
536 |
+
# models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal
|
537 |
+
|
538 |
+
sample, res_samples = downsample_block(
|
539 |
+
hidden_states=sample,
|
540 |
+
temb=emb,
|
541 |
+
image_only_indicator=image_only_indicator,
|
542 |
+
)
|
543 |
+
|
544 |
+
down_block_res_samples += res_samples
|
545 |
+
|
546 |
+
# 4. mid
|
547 |
+
sample = self.mid_block(
|
548 |
+
hidden_states=sample,
|
549 |
+
temb=emb,
|
550 |
+
encoder_hidden_states=encoder_hidden_states,
|
551 |
+
image_only_indicator=image_only_indicator,
|
552 |
+
)
|
553 |
+
|
554 |
+
controlnet_down_block_res_samples = ()
|
555 |
+
|
556 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
557 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
558 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
559 |
+
|
560 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
561 |
+
|
562 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
563 |
+
|
564 |
+
# 6. scaling
|
565 |
+
|
566 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
567 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
568 |
+
|
569 |
+
if not return_dict:
|
570 |
+
return (down_block_res_samples, mid_block_res_sample)
|
571 |
+
|
572 |
+
return ControlNetOutput(
|
573 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
574 |
+
)
|
575 |
+
|
576 |
+
@classmethod
|
577 |
+
def from_unet(
|
578 |
+
cls,
|
579 |
+
unet: UNetSpatioTemporalConditionModel,
|
580 |
+
# controlnet_conditioning_channel_order: str = "rgb",
|
581 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
582 |
+
load_weights_from_unet: bool = True,
|
583 |
+
conditioning_channels: int = 3,
|
584 |
+
with_id_feature: bool = False,
|
585 |
+
):
|
586 |
+
r"""
|
587 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
588 |
+
|
589 |
+
Parameters:
|
590 |
+
unet (`UNet2DConditionModel`):
|
591 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
592 |
+
where applicable.
|
593 |
+
"""
|
594 |
+
|
595 |
+
# transformer_layers_per_block = (
|
596 |
+
# unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
597 |
+
# )
|
598 |
+
# encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
599 |
+
# encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
600 |
+
# addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
601 |
+
# addition_time_embed_dim = (
|
602 |
+
# unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
603 |
+
# )
|
604 |
+
print(unet.config)
|
605 |
+
controlnet = cls(
|
606 |
+
in_channels=unet.config.in_channels,
|
607 |
+
down_block_types=unet.config.down_block_types,
|
608 |
+
block_out_channels=unet.config.block_out_channels,
|
609 |
+
addition_time_embed_dim=unet.config.addition_time_embed_dim,
|
610 |
+
transformer_layers_per_block=unet.config.transformer_layers_per_block,
|
611 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
612 |
+
num_attention_heads=unet.config.num_attention_heads,
|
613 |
+
num_frames=unet.config.num_frames,
|
614 |
+
sample_size=unet.config.sample_size, # Added based on the dict
|
615 |
+
layers_per_block=unet.config.layers_per_block,
|
616 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
617 |
+
conditioning_channels = conditioning_channels,
|
618 |
+
conditioning_embedding_out_channels = conditioning_embedding_out_channels,
|
619 |
+
with_id_feature=with_id_feature,
|
620 |
+
)
|
621 |
+
# controlnet rgb channel order ignored, set to not makea difference by default
|
622 |
+
|
623 |
+
if load_weights_from_unet:
|
624 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
625 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
626 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
627 |
+
|
628 |
+
# if controlnet.class_embedding:
|
629 |
+
# controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
630 |
+
|
631 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
632 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
633 |
+
|
634 |
+
return controlnet
|
635 |
+
|
636 |
+
@property
|
637 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
638 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
639 |
+
r"""
|
640 |
+
Returns:
|
641 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
642 |
+
indexed by its weight name.
|
643 |
+
"""
|
644 |
+
# set recursively
|
645 |
+
processors = {}
|
646 |
+
|
647 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
648 |
+
if hasattr(module, "get_processor"):
|
649 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
650 |
+
|
651 |
+
for sub_name, child in module.named_children():
|
652 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
653 |
+
|
654 |
+
return processors
|
655 |
+
|
656 |
+
for name, module in self.named_children():
|
657 |
+
fn_recursive_add_processors(name, module, processors)
|
658 |
+
|
659 |
+
return processors
|
660 |
+
|
661 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
662 |
+
def set_attn_processor(
|
663 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
664 |
+
):
|
665 |
+
r"""
|
666 |
+
Sets the attention processor to use to compute attention.
|
667 |
+
|
668 |
+
Parameters:
|
669 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
670 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
671 |
+
for **all** `Attention` layers.
|
672 |
+
|
673 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
674 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
675 |
+
|
676 |
+
"""
|
677 |
+
count = len(self.attn_processors.keys())
|
678 |
+
|
679 |
+
if isinstance(processor, dict) and len(processor) != count:
|
680 |
+
raise ValueError(
|
681 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
682 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
683 |
+
)
|
684 |
+
|
685 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
686 |
+
if hasattr(module, "set_processor"):
|
687 |
+
if not isinstance(processor, dict):
|
688 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
689 |
+
else:
|
690 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
691 |
+
|
692 |
+
for sub_name, child in module.named_children():
|
693 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
694 |
+
|
695 |
+
for name, module in self.named_children():
|
696 |
+
fn_recursive_attn_processor(name, module, processor)
|
697 |
+
|
698 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
699 |
+
def set_default_attn_processor(self):
|
700 |
+
"""
|
701 |
+
Disables custom attention processors and sets the default attention implementation.
|
702 |
+
"""
|
703 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
704 |
+
processor = AttnAddedKVProcessor()
|
705 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
706 |
+
processor = AttnProcessor()
|
707 |
+
else:
|
708 |
+
raise ValueError(
|
709 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
710 |
+
)
|
711 |
+
|
712 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
713 |
+
|
714 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
715 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
716 |
+
r"""
|
717 |
+
Enable sliced attention computation.
|
718 |
+
|
719 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
720 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
721 |
+
|
722 |
+
Args:
|
723 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
724 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
725 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
726 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
727 |
+
must be a multiple of `slice_size`.
|
728 |
+
"""
|
729 |
+
sliceable_head_dims = []
|
730 |
+
|
731 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
732 |
+
if hasattr(module, "set_attention_slice"):
|
733 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
734 |
+
|
735 |
+
for child in module.children():
|
736 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
737 |
+
|
738 |
+
# retrieve number of attention layers
|
739 |
+
for module in self.children():
|
740 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
741 |
+
|
742 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
743 |
+
|
744 |
+
if slice_size == "auto":
|
745 |
+
# half the attention head size is usually a good trade-off between
|
746 |
+
# speed and memory
|
747 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
748 |
+
elif slice_size == "max":
|
749 |
+
# make smallest slice possible
|
750 |
+
slice_size = num_sliceable_layers * [1]
|
751 |
+
|
752 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
753 |
+
|
754 |
+
if len(slice_size) != len(sliceable_head_dims):
|
755 |
+
raise ValueError(
|
756 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
757 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
758 |
+
)
|
759 |
+
|
760 |
+
for i in range(len(slice_size)):
|
761 |
+
size = slice_size[i]
|
762 |
+
dim = sliceable_head_dims[i]
|
763 |
+
if size is not None and size > dim:
|
764 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
765 |
+
|
766 |
+
# Recursively walk through all the children.
|
767 |
+
# Any children which exposes the set_attention_slice method
|
768 |
+
# gets the message
|
769 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
770 |
+
if hasattr(module, "set_attention_slice"):
|
771 |
+
module.set_attention_slice(slice_size.pop())
|
772 |
+
|
773 |
+
for child in module.children():
|
774 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
775 |
+
|
776 |
+
reversed_slice_size = list(reversed(slice_size))
|
777 |
+
for module in self.children():
|
778 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
779 |
+
|
780 |
+
# def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
781 |
+
# if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
782 |
+
# module.gradient_checkpointing = value
|
783 |
+
|
784 |
+
|
785 |
+
def zero_module(module):
|
786 |
+
for p in module.parameters():
|
787 |
+
nn.init.zeros_(p)
|
788 |
+
return module
|
models_diffusers/sift_match.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from scipy.interpolate import interp1d, PchipInterpolator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def sift_match(
|
10 |
+
img1, img2,
|
11 |
+
thr=0.5,
|
12 |
+
topk=5, method="max_dist",
|
13 |
+
output_path="sift_matches.png",
|
14 |
+
):
|
15 |
+
|
16 |
+
assert method in ["max_dist", "random", "max_score", "max_score_even"]
|
17 |
+
|
18 |
+
# img1 and img2 are PIL images
|
19 |
+
# small threshold means less points
|
20 |
+
|
21 |
+
# 1. to cv2 grayscale image
|
22 |
+
img1_rgb = np.array(img1).copy()
|
23 |
+
img2_rgb = np.array(img2).copy()
|
24 |
+
img1 = cv2.cvtColor(np.array(img1), cv2.COLOR_RGB2BGR)
|
25 |
+
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
26 |
+
img2 = cv2.cvtColor(np.array(img2), cv2.COLOR_RGB2BGR)
|
27 |
+
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
28 |
+
|
29 |
+
# 2. use sift to extract keypoints and descriptors
|
30 |
+
# Initiate SIFT detector
|
31 |
+
sift = cv2.SIFT_create()
|
32 |
+
# find the keypoints and descriptors with SIFT
|
33 |
+
kp1, des1 = sift.detectAndCompute(img1, None)
|
34 |
+
kp2, des2 = sift.detectAndCompute(img2, None)
|
35 |
+
# BFMatcher with default params
|
36 |
+
bf = cv2.BFMatcher()
|
37 |
+
# bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
|
38 |
+
# bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
39 |
+
matches = bf.knnMatch(des1, des2, k=2)
|
40 |
+
|
41 |
+
# Apply ratio test
|
42 |
+
good = []
|
43 |
+
point_list = []
|
44 |
+
distance_list = []
|
45 |
+
|
46 |
+
if method in ['max_score', 'max_score_even']:
|
47 |
+
matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)
|
48 |
+
|
49 |
+
anchor_points_list = []
|
50 |
+
for m, n in matches[:topk]:
|
51 |
+
print(m.distance / n.distance)
|
52 |
+
|
53 |
+
# check evenly distributed
|
54 |
+
if method == 'max_score_even':
|
55 |
+
to_close = False
|
56 |
+
for anchor_point in anchor_points_list:
|
57 |
+
pt1 = kp1[m.queryIdx].pt
|
58 |
+
dist = np.linalg.norm(np.array(pt1) - np.array(anchor_point))
|
59 |
+
if dist < 50:
|
60 |
+
to_close = True
|
61 |
+
break
|
62 |
+
if to_close:
|
63 |
+
continue
|
64 |
+
|
65 |
+
good.append([m])
|
66 |
+
|
67 |
+
pt1 = kp1[m.queryIdx].pt
|
68 |
+
pt2 = kp2[m.trainIdx].pt
|
69 |
+
dist = np.linalg.norm(np.array(pt1) - np.array(pt2))
|
70 |
+
distance_list.append(dist)
|
71 |
+
|
72 |
+
anchor_points_list.append(pt1)
|
73 |
+
|
74 |
+
pt1 = torch.tensor(pt1)
|
75 |
+
pt2 = torch.tensor(pt2)
|
76 |
+
pt = torch.stack([pt1, pt2]) # (2, 2)
|
77 |
+
point_list.append(pt)
|
78 |
+
|
79 |
+
if method in ['max_dist', 'random']:
|
80 |
+
for m, n in matches:
|
81 |
+
if m.distance < thr * n.distance:
|
82 |
+
good.append([m])
|
83 |
+
|
84 |
+
pt1 = kp1[m.queryIdx].pt
|
85 |
+
pt2 = kp2[m.trainIdx].pt
|
86 |
+
dist = np.linalg.norm(np.array(pt1) - np.array(pt2))
|
87 |
+
distance_list.append(dist)
|
88 |
+
|
89 |
+
pt1 = torch.tensor(pt1)
|
90 |
+
pt2 = torch.tensor(pt2)
|
91 |
+
pt = torch.stack([pt1, pt2]) # (2, 2)
|
92 |
+
point_list.append(pt)
|
93 |
+
|
94 |
+
distance_list = np.array(distance_list)
|
95 |
+
# only keep the points with the largest topk distance
|
96 |
+
idx = np.argsort(distance_list)
|
97 |
+
if method == "max_dist":
|
98 |
+
idx = idx[-topk:]
|
99 |
+
elif method == "random":
|
100 |
+
topk = min(topk, len(idx))
|
101 |
+
idx = np.random.choice(idx, topk, replace=False)
|
102 |
+
elif method == "max_score":
|
103 |
+
import pdb; pdb.set_trace()
|
104 |
+
raise NotImplementedError
|
105 |
+
# idx = np.argsort(distance_list)[:topk]
|
106 |
+
else:
|
107 |
+
raise ValueError(f"Unknown method {method}")
|
108 |
+
|
109 |
+
point_list = [point_list[i] for i in idx]
|
110 |
+
good = [good[i] for i in idx]
|
111 |
+
|
112 |
+
# # cv2.drawMatchesKnn expects list of lists as matches.
|
113 |
+
# draw_params = dict(
|
114 |
+
# matchColor=(255, 0, 0),
|
115 |
+
# singlePointColor=None,
|
116 |
+
# flags=2,
|
117 |
+
# )
|
118 |
+
# img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, None, **draw_params)
|
119 |
+
|
120 |
+
|
121 |
+
# # manually draw the matches, the images are put in horizontal
|
122 |
+
# img3 = np.concatenate([img1_rgb, img2_rgb], axis=1) # (h, 2w, 3)
|
123 |
+
# for m in good:
|
124 |
+
# pt1 = kp1[m[0].queryIdx].pt
|
125 |
+
# pt2 = kp2[m[0].trainIdx].pt
|
126 |
+
# pt1 = (int(pt1[0]), int(pt1[1]))
|
127 |
+
# pt2 = (int(pt2[0]) + img1_rgb.shape[1], int(pt2[1]))
|
128 |
+
# cv2.line(img3, pt1, pt2, (255, 0, 0), 1)
|
129 |
+
|
130 |
+
# manually draw the matches, the images are put in vertical. with 10 pixels margin
|
131 |
+
margin = 10
|
132 |
+
img3 = np.zeros((img1_rgb.shape[0] + img2_rgb.shape[0] + margin, max(img1_rgb.shape[1], img2_rgb.shape[1]), 3), dtype=np.uint8)
|
133 |
+
# the margin is white
|
134 |
+
img3[:, :] = 255
|
135 |
+
img3[:img1_rgb.shape[0], :img1_rgb.shape[1]] = img1_rgb
|
136 |
+
img3[img1_rgb.shape[0] + margin:, :img2_rgb.shape[1]] = img2_rgb
|
137 |
+
# create a color list of 6 different colors
|
138 |
+
color_list = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255), (255, 0, 255)]
|
139 |
+
for color_idx, m in enumerate(good):
|
140 |
+
pt1 = kp1[m[0].queryIdx].pt
|
141 |
+
pt2 = kp2[m[0].trainIdx].pt
|
142 |
+
pt1 = (int(pt1[0]), int(pt1[1]))
|
143 |
+
pt2 = (int(pt2[0]), int(pt2[1]) + img1_rgb.shape[0] + margin)
|
144 |
+
# cv2.line(img3, pt1, pt2, (255, 0, 0), 1)
|
145 |
+
# avoid the zigzag artifact in line
|
146 |
+
# random_color = tuple(np.random.randint(0, 255, 3).tolist())
|
147 |
+
color = color_list[color_idx % len(color_list)]
|
148 |
+
cv2.line(img3, pt1, pt2, color, 1, lineType=cv2.LINE_AA)
|
149 |
+
# add a empty circle to both start and end points
|
150 |
+
cv2.circle(img3, pt1, 3, color, lineType=cv2.LINE_AA)
|
151 |
+
cv2.circle(img3, pt2, 3, color, lineType=cv2.LINE_AA)
|
152 |
+
|
153 |
+
Image.fromarray(img3).save(output_path)
|
154 |
+
print(f"Save the sift matches to {output_path}")
|
155 |
+
|
156 |
+
# (f, topk, 2), f=2 (before interpolation)
|
157 |
+
if len(point_list) == 0:
|
158 |
+
return None
|
159 |
+
|
160 |
+
point_list = torch.stack(point_list)
|
161 |
+
point_list = point_list.permute(1, 0, 2)
|
162 |
+
|
163 |
+
return point_list
|
164 |
+
|
165 |
+
|
166 |
+
def interpolate_trajectory(points_torch, num_frames, t=None):
|
167 |
+
# points:(f, topk, 2), f=2 (before interpolation)
|
168 |
+
|
169 |
+
num_points = points_torch.shape[1]
|
170 |
+
points_torch = points_torch.permute(1, 0, 2) # (topk, f, 2)
|
171 |
+
|
172 |
+
points_list = []
|
173 |
+
for i in range(num_points):
|
174 |
+
# points:(f, 2)
|
175 |
+
points = points_torch[i].cpu().numpy()
|
176 |
+
|
177 |
+
x = [point[0] for point in points]
|
178 |
+
y = [point[1] for point in points]
|
179 |
+
|
180 |
+
if t is None:
|
181 |
+
t = np.linspace(0, 1, len(points))
|
182 |
+
|
183 |
+
# fx = interp1d(t, x, kind='cubic')
|
184 |
+
# fy = interp1d(t, y, kind='cubic')
|
185 |
+
fx = PchipInterpolator(t, x)
|
186 |
+
fy = PchipInterpolator(t, y)
|
187 |
+
|
188 |
+
new_t = np.linspace(0, 1, num_frames)
|
189 |
+
|
190 |
+
new_x = fx(new_t)
|
191 |
+
new_y = fy(new_t)
|
192 |
+
new_points = list(zip(new_x, new_y))
|
193 |
+
|
194 |
+
points_list.append(new_points)
|
195 |
+
|
196 |
+
points = torch.tensor(points_list) # (topk, num_frames, 2)
|
197 |
+
points = points.permute(1, 0, 2) # (num_frames, topk, 2)
|
198 |
+
|
199 |
+
return points
|
200 |
+
|
201 |
+
|
202 |
+
# diffusion feature matching
|
203 |
+
def point_tracking(
|
204 |
+
F0,
|
205 |
+
F1,
|
206 |
+
handle_points,
|
207 |
+
handle_points_init,
|
208 |
+
track_dist=5,
|
209 |
+
):
|
210 |
+
# handle_points: (num_points, 2)
|
211 |
+
# NOTE:
|
212 |
+
# 1. all row and col are reversed
|
213 |
+
# 2. handle_points in (y, x), not (x, y)
|
214 |
+
|
215 |
+
# reverse row and col
|
216 |
+
handle_points = torch.stack([handle_points[:, 1], handle_points[:, 0]], dim=-1)
|
217 |
+
handle_points_init = torch.stack([handle_points_init[:, 1], handle_points_init[:, 0]], dim=-1)
|
218 |
+
|
219 |
+
with torch.no_grad():
|
220 |
+
_, _, max_r, max_c = F0.shape
|
221 |
+
|
222 |
+
for i in range(len(handle_points)):
|
223 |
+
pi0, pi = handle_points_init[i], handle_points[i]
|
224 |
+
f0 = F0[:, :, int(pi0[0]), int(pi0[1])]
|
225 |
+
|
226 |
+
r1, r2 = max(0, int(pi[0]) - track_dist), min(max_r, int(pi[0]) + track_dist + 1)
|
227 |
+
c1, c2 = max(0, int(pi[1]) - track_dist), min(max_c, int(pi[1]) + track_dist + 1)
|
228 |
+
F1_neighbor = F1[:, :, r1:r2, c1:c2]
|
229 |
+
all_dist = (f0.unsqueeze(dim=-1).unsqueeze(dim=-1) - F1_neighbor).abs().sum(dim=1)
|
230 |
+
all_dist = all_dist.squeeze(dim=0)
|
231 |
+
row, col = divmod(all_dist.argmin().item(), all_dist.shape[-1])
|
232 |
+
# handle_points[i][0] = pi[0] - track_dist + row
|
233 |
+
# handle_points[i][1] = pi[1] - track_dist + col
|
234 |
+
handle_points[i][0] = r1 + row
|
235 |
+
handle_points[i][1] = c1 + col
|
236 |
+
|
237 |
+
handle_points = torch.stack([handle_points[:, 1], handle_points[:, 0]], dim=-1) # (num_points, 2)
|
238 |
+
|
239 |
+
return handle_points
|
models_diffusers/transformer_temporal.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
21 |
+
from diffusers.utils import BaseOutput
|
22 |
+
from diffusers.models.attention import BasicTransformerBlock, TemporalBasicTransformerBlock
|
23 |
+
# from diffusers.models.attention import BasicTransformerBlock
|
24 |
+
from models_diffusers.attention import BasicTransformerBlock
|
25 |
+
|
26 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
27 |
+
from diffusers.models.modeling_utils import ModelMixin
|
28 |
+
from diffusers.models.resnet import AlphaBlender
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class TransformerTemporalModelOutput(BaseOutput):
|
33 |
+
"""
|
34 |
+
The output of [`TransformerTemporalModel`].
|
35 |
+
|
36 |
+
Args:
|
37 |
+
sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
|
38 |
+
The hidden states output conditioned on `encoder_hidden_states` input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
sample: torch.FloatTensor
|
42 |
+
|
43 |
+
|
44 |
+
class TransformerTemporalModel(ModelMixin, ConfigMixin):
|
45 |
+
"""
|
46 |
+
A Transformer model for video-like data.
|
47 |
+
|
48 |
+
Parameters:
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
50 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
51 |
+
in_channels (`int`, *optional*):
|
52 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
53 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
54 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
55 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
56 |
+
attention_bias (`bool`, *optional*):
|
57 |
+
Configure if the `TransformerBlock` attention should contain a bias parameter.
|
58 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
59 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
60 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
61 |
+
Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
|
62 |
+
activation functions.
|
63 |
+
norm_elementwise_affine (`bool`, *optional*):
|
64 |
+
Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
|
65 |
+
double_self_attention (`bool`, *optional*):
|
66 |
+
Configure if each `TransformerBlock` should contain two self-attention layers.
|
67 |
+
positional_embeddings: (`str`, *optional*):
|
68 |
+
The type of positional embeddings to apply to the sequence input before passing use.
|
69 |
+
num_positional_embeddings: (`int`, *optional*):
|
70 |
+
The maximum length of the sequence over which to apply positional embeddings.
|
71 |
+
"""
|
72 |
+
|
73 |
+
@register_to_config
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
num_attention_heads: int = 16,
|
77 |
+
attention_head_dim: int = 88,
|
78 |
+
in_channels: Optional[int] = None,
|
79 |
+
out_channels: Optional[int] = None,
|
80 |
+
num_layers: int = 1,
|
81 |
+
dropout: float = 0.0,
|
82 |
+
norm_num_groups: int = 32,
|
83 |
+
cross_attention_dim: Optional[int] = None,
|
84 |
+
attention_bias: bool = False,
|
85 |
+
sample_size: Optional[int] = None,
|
86 |
+
activation_fn: str = "geglu",
|
87 |
+
norm_elementwise_affine: bool = True,
|
88 |
+
double_self_attention: bool = True,
|
89 |
+
positional_embeddings: Optional[str] = None,
|
90 |
+
num_positional_embeddings: Optional[int] = None,
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
self.num_attention_heads = num_attention_heads
|
94 |
+
self.attention_head_dim = attention_head_dim
|
95 |
+
inner_dim = num_attention_heads * attention_head_dim
|
96 |
+
|
97 |
+
self.in_channels = in_channels
|
98 |
+
|
99 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
100 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
101 |
+
|
102 |
+
# 3. Define transformers blocks
|
103 |
+
self.transformer_blocks = nn.ModuleList(
|
104 |
+
[
|
105 |
+
BasicTransformerBlock(
|
106 |
+
inner_dim,
|
107 |
+
num_attention_heads,
|
108 |
+
attention_head_dim,
|
109 |
+
dropout=dropout,
|
110 |
+
cross_attention_dim=cross_attention_dim,
|
111 |
+
activation_fn=activation_fn,
|
112 |
+
attention_bias=attention_bias,
|
113 |
+
double_self_attention=double_self_attention,
|
114 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
115 |
+
positional_embeddings=positional_embeddings,
|
116 |
+
num_positional_embeddings=num_positional_embeddings,
|
117 |
+
)
|
118 |
+
for d in range(num_layers)
|
119 |
+
]
|
120 |
+
)
|
121 |
+
|
122 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self,
|
126 |
+
hidden_states: torch.FloatTensor,
|
127 |
+
encoder_hidden_states: Optional[torch.LongTensor] = None,
|
128 |
+
timestep: Optional[torch.LongTensor] = None,
|
129 |
+
class_labels: torch.LongTensor = None,
|
130 |
+
num_frames: int = 1,
|
131 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
132 |
+
return_dict: bool = True,
|
133 |
+
) -> TransformerTemporalModelOutput:
|
134 |
+
"""
|
135 |
+
The [`TransformerTemporal`] forward method.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
139 |
+
Input hidden_states.
|
140 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
141 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
142 |
+
self-attention.
|
143 |
+
timestep ( `torch.LongTensor`, *optional*):
|
144 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
145 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
146 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
147 |
+
`AdaLayerZeroNorm`.
|
148 |
+
num_frames (`int`, *optional*, defaults to 1):
|
149 |
+
The number of frames to be processed per batch. This is used to reshape the hidden states.
|
150 |
+
cross_attention_kwargs (`dict`, *optional*):
|
151 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
152 |
+
`self.processor` in
|
153 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
154 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
155 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
156 |
+
tuple.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
|
160 |
+
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
|
161 |
+
returned, otherwise a `tuple` where the first element is the sample tensor.
|
162 |
+
"""
|
163 |
+
# 1. Input
|
164 |
+
batch_frames, channel, height, width = hidden_states.shape
|
165 |
+
batch_size = batch_frames // num_frames
|
166 |
+
|
167 |
+
residual = hidden_states
|
168 |
+
|
169 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
|
170 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
|
171 |
+
|
172 |
+
hidden_states = self.norm(hidden_states)
|
173 |
+
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)
|
174 |
+
|
175 |
+
hidden_states = self.proj_in(hidden_states)
|
176 |
+
|
177 |
+
# 2. Blocks
|
178 |
+
for block in self.transformer_blocks:
|
179 |
+
hidden_states = block(
|
180 |
+
hidden_states,
|
181 |
+
encoder_hidden_states=encoder_hidden_states,
|
182 |
+
timestep=timestep,
|
183 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
184 |
+
class_labels=class_labels,
|
185 |
+
)
|
186 |
+
|
187 |
+
# 3. Output
|
188 |
+
hidden_states = self.proj_out(hidden_states)
|
189 |
+
hidden_states = (
|
190 |
+
hidden_states[None, None, :]
|
191 |
+
.reshape(batch_size, height, width, num_frames, channel)
|
192 |
+
.permute(0, 3, 4, 1, 2)
|
193 |
+
.contiguous()
|
194 |
+
)
|
195 |
+
hidden_states = hidden_states.reshape(batch_frames, channel, height, width)
|
196 |
+
|
197 |
+
output = hidden_states + residual
|
198 |
+
|
199 |
+
if not return_dict:
|
200 |
+
return (output,)
|
201 |
+
|
202 |
+
return TransformerTemporalModelOutput(sample=output)
|
203 |
+
|
204 |
+
|
205 |
+
class TransformerSpatioTemporalModel(nn.Module):
|
206 |
+
"""
|
207 |
+
A Transformer model for video-like data.
|
208 |
+
|
209 |
+
Parameters:
|
210 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
211 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
212 |
+
in_channels (`int`, *optional*):
|
213 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
214 |
+
out_channels (`int`, *optional*):
|
215 |
+
The number of channels in the output (specify if the input is **continuous**).
|
216 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
217 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
218 |
+
"""
|
219 |
+
|
220 |
+
def __init__(
|
221 |
+
self,
|
222 |
+
num_attention_heads: int = 16,
|
223 |
+
attention_head_dim: int = 88,
|
224 |
+
in_channels: int = 320,
|
225 |
+
out_channels: Optional[int] = None,
|
226 |
+
num_layers: int = 1,
|
227 |
+
cross_attention_dim: Optional[int] = None,
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
self.num_attention_heads = num_attention_heads
|
231 |
+
self.attention_head_dim = attention_head_dim
|
232 |
+
|
233 |
+
inner_dim = num_attention_heads * attention_head_dim
|
234 |
+
self.inner_dim = inner_dim
|
235 |
+
|
236 |
+
# 2. Define input layers
|
237 |
+
self.in_channels = in_channels
|
238 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6)
|
239 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
240 |
+
|
241 |
+
# 3. Define transformers blocks
|
242 |
+
self.transformer_blocks = nn.ModuleList(
|
243 |
+
[
|
244 |
+
BasicTransformerBlock(
|
245 |
+
inner_dim,
|
246 |
+
num_attention_heads,
|
247 |
+
attention_head_dim,
|
248 |
+
cross_attention_dim=cross_attention_dim,
|
249 |
+
)
|
250 |
+
for d in range(num_layers)
|
251 |
+
]
|
252 |
+
)
|
253 |
+
|
254 |
+
time_mix_inner_dim = inner_dim
|
255 |
+
self.temporal_transformer_blocks = nn.ModuleList(
|
256 |
+
[
|
257 |
+
TemporalBasicTransformerBlock(
|
258 |
+
inner_dim,
|
259 |
+
time_mix_inner_dim,
|
260 |
+
num_attention_heads,
|
261 |
+
attention_head_dim,
|
262 |
+
cross_attention_dim=cross_attention_dim,
|
263 |
+
)
|
264 |
+
for _ in range(num_layers)
|
265 |
+
]
|
266 |
+
)
|
267 |
+
|
268 |
+
time_embed_dim = in_channels * 4
|
269 |
+
self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels)
|
270 |
+
self.time_proj = Timesteps(in_channels, True, 0)
|
271 |
+
self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images")
|
272 |
+
|
273 |
+
# 4. Define output layers
|
274 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
275 |
+
# TODO: should use out_channels for continuous projections
|
276 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
277 |
+
|
278 |
+
self.gradient_checkpointing = False
|
279 |
+
|
280 |
+
def forward(
|
281 |
+
self,
|
282 |
+
hidden_states: torch.Tensor,
|
283 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
284 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
285 |
+
return_dict: bool = True,
|
286 |
+
):
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
290 |
+
Input hidden_states.
|
291 |
+
num_frames (`int`):
|
292 |
+
The number of frames to be processed per batch. This is used to reshape the hidden states.
|
293 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
294 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
295 |
+
self-attention.
|
296 |
+
image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*):
|
297 |
+
A tensor indicating whether the input contains only images. 1 indicates that the input contains only
|
298 |
+
images, 0 indicates that the input contains video frames.
|
299 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
300 |
+
Whether or not to return a [`~models.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain
|
301 |
+
tuple.
|
302 |
+
|
303 |
+
Returns:
|
304 |
+
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
|
305 |
+
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
|
306 |
+
returned, otherwise a `tuple` where the first element is the sample tensor.
|
307 |
+
"""
|
308 |
+
# 1. Input
|
309 |
+
batch_frames, _, height, width = hidden_states.shape
|
310 |
+
num_frames = image_only_indicator.shape[-1]
|
311 |
+
batch_size = batch_frames // num_frames
|
312 |
+
|
313 |
+
time_context = encoder_hidden_states
|
314 |
+
time_context_first_timestep = time_context[None, :].reshape(
|
315 |
+
batch_size, num_frames, -1, time_context.shape[-1]
|
316 |
+
)[:, 0]
|
317 |
+
time_context = time_context_first_timestep[None, :].broadcast_to(
|
318 |
+
# height * width, batch_size, 1, time_context.shape[-1]
|
319 |
+
height * width, batch_size, -1, time_context.shape[-1]
|
320 |
+
)
|
321 |
+
# time_context = time_context.reshape(height * width * batch_size, 1, time_context.shape[-1])
|
322 |
+
time_context = time_context.reshape(height * width * batch_size, -1, time_context.shape[-1])
|
323 |
+
|
324 |
+
residual = hidden_states
|
325 |
+
|
326 |
+
hidden_states = self.norm(hidden_states)
|
327 |
+
inner_dim = hidden_states.shape[1]
|
328 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim)
|
329 |
+
hidden_states = self.proj_in(hidden_states)
|
330 |
+
|
331 |
+
num_frames_emb = torch.arange(num_frames, device=hidden_states.device)
|
332 |
+
num_frames_emb = num_frames_emb.repeat(batch_size, 1)
|
333 |
+
num_frames_emb = num_frames_emb.reshape(-1)
|
334 |
+
t_emb = self.time_proj(num_frames_emb)
|
335 |
+
|
336 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
337 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
338 |
+
# there might be better ways to encapsulate this.
|
339 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
340 |
+
|
341 |
+
emb = self.time_pos_embed(t_emb)
|
342 |
+
emb = emb[:, None, :]
|
343 |
+
|
344 |
+
# 2. Blocks
|
345 |
+
for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks):
|
346 |
+
if self.training and self.gradient_checkpointing:
|
347 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
348 |
+
block,
|
349 |
+
hidden_states,
|
350 |
+
None,
|
351 |
+
encoder_hidden_states,
|
352 |
+
None,
|
353 |
+
use_reentrant=False,
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
hidden_states = block(
|
357 |
+
hidden_states,
|
358 |
+
encoder_hidden_states=encoder_hidden_states,
|
359 |
+
)
|
360 |
+
|
361 |
+
hidden_states_mix = hidden_states
|
362 |
+
hidden_states_mix = hidden_states_mix + emb
|
363 |
+
|
364 |
+
hidden_states_mix = temporal_block(
|
365 |
+
hidden_states_mix,
|
366 |
+
num_frames=num_frames,
|
367 |
+
encoder_hidden_states=time_context,
|
368 |
+
)
|
369 |
+
hidden_states = self.time_mixer(
|
370 |
+
x_spatial=hidden_states,
|
371 |
+
x_temporal=hidden_states_mix,
|
372 |
+
image_only_indicator=image_only_indicator,
|
373 |
+
)
|
374 |
+
|
375 |
+
# 3. Output
|
376 |
+
hidden_states = self.proj_out(hidden_states)
|
377 |
+
hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
378 |
+
|
379 |
+
output = hidden_states + residual
|
380 |
+
|
381 |
+
if not return_dict:
|
382 |
+
return (output,)
|
383 |
+
|
384 |
+
return TransformerTemporalModelOutput(sample=output)
|
models_diffusers/unet_3d_blocks.py
ADDED
@@ -0,0 +1,2405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import is_torch_version
|
21 |
+
from diffusers.utils.torch_utils import apply_freeu
|
22 |
+
# from diffusers.models.attention import Attention
|
23 |
+
from models_diffusers.attention_processor import Attention
|
24 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
25 |
+
from diffusers.models.resnet import (
|
26 |
+
Downsample2D,
|
27 |
+
ResnetBlock2D,
|
28 |
+
SpatioTemporalResBlock,
|
29 |
+
TemporalConvLayer,
|
30 |
+
Upsample2D,
|
31 |
+
)
|
32 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
33 |
+
from .transformer_temporal import (
|
34 |
+
TransformerSpatioTemporalModel,
|
35 |
+
TransformerTemporalModel,
|
36 |
+
)
|
37 |
+
|
38 |
+
from einops import rearrange
|
39 |
+
|
40 |
+
|
41 |
+
def get_down_block(
|
42 |
+
down_block_type: str,
|
43 |
+
num_layers: int,
|
44 |
+
in_channels: int,
|
45 |
+
out_channels: int,
|
46 |
+
temb_channels: int,
|
47 |
+
add_downsample: bool,
|
48 |
+
resnet_eps: float,
|
49 |
+
resnet_act_fn: str,
|
50 |
+
num_attention_heads: int,
|
51 |
+
resnet_groups: Optional[int] = None,
|
52 |
+
cross_attention_dim: Optional[int] = None,
|
53 |
+
downsample_padding: Optional[int] = None,
|
54 |
+
dual_cross_attention: bool = False,
|
55 |
+
use_linear_projection: bool = True,
|
56 |
+
only_cross_attention: bool = False,
|
57 |
+
upcast_attention: bool = False,
|
58 |
+
resnet_time_scale_shift: str = "default",
|
59 |
+
temporal_num_attention_heads: int = 8,
|
60 |
+
temporal_max_seq_length: int = 32,
|
61 |
+
transformer_layers_per_block: int = 1,
|
62 |
+
) -> Union[
|
63 |
+
"DownBlock3D",
|
64 |
+
"CrossAttnDownBlock3D",
|
65 |
+
"DownBlockMotion",
|
66 |
+
"CrossAttnDownBlockMotion",
|
67 |
+
"DownBlockSpatioTemporal",
|
68 |
+
"CrossAttnDownBlockSpatioTemporal",
|
69 |
+
]:
|
70 |
+
if down_block_type == "DownBlock3D":
|
71 |
+
return DownBlock3D(
|
72 |
+
num_layers=num_layers,
|
73 |
+
in_channels=in_channels,
|
74 |
+
out_channels=out_channels,
|
75 |
+
temb_channels=temb_channels,
|
76 |
+
add_downsample=add_downsample,
|
77 |
+
resnet_eps=resnet_eps,
|
78 |
+
resnet_act_fn=resnet_act_fn,
|
79 |
+
resnet_groups=resnet_groups,
|
80 |
+
downsample_padding=downsample_padding,
|
81 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
82 |
+
)
|
83 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
84 |
+
if cross_attention_dim is None:
|
85 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
86 |
+
return CrossAttnDownBlock3D(
|
87 |
+
num_layers=num_layers,
|
88 |
+
in_channels=in_channels,
|
89 |
+
out_channels=out_channels,
|
90 |
+
temb_channels=temb_channels,
|
91 |
+
add_downsample=add_downsample,
|
92 |
+
resnet_eps=resnet_eps,
|
93 |
+
resnet_act_fn=resnet_act_fn,
|
94 |
+
resnet_groups=resnet_groups,
|
95 |
+
downsample_padding=downsample_padding,
|
96 |
+
cross_attention_dim=cross_attention_dim,
|
97 |
+
num_attention_heads=num_attention_heads,
|
98 |
+
dual_cross_attention=dual_cross_attention,
|
99 |
+
use_linear_projection=use_linear_projection,
|
100 |
+
only_cross_attention=only_cross_attention,
|
101 |
+
upcast_attention=upcast_attention,
|
102 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
103 |
+
)
|
104 |
+
if down_block_type == "DownBlockMotion":
|
105 |
+
return DownBlockMotion(
|
106 |
+
num_layers=num_layers,
|
107 |
+
in_channels=in_channels,
|
108 |
+
out_channels=out_channels,
|
109 |
+
temb_channels=temb_channels,
|
110 |
+
add_downsample=add_downsample,
|
111 |
+
resnet_eps=resnet_eps,
|
112 |
+
resnet_act_fn=resnet_act_fn,
|
113 |
+
resnet_groups=resnet_groups,
|
114 |
+
downsample_padding=downsample_padding,
|
115 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
116 |
+
temporal_num_attention_heads=temporal_num_attention_heads,
|
117 |
+
temporal_max_seq_length=temporal_max_seq_length,
|
118 |
+
)
|
119 |
+
elif down_block_type == "CrossAttnDownBlockMotion":
|
120 |
+
if cross_attention_dim is None:
|
121 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMotion")
|
122 |
+
return CrossAttnDownBlockMotion(
|
123 |
+
num_layers=num_layers,
|
124 |
+
in_channels=in_channels,
|
125 |
+
out_channels=out_channels,
|
126 |
+
temb_channels=temb_channels,
|
127 |
+
add_downsample=add_downsample,
|
128 |
+
resnet_eps=resnet_eps,
|
129 |
+
resnet_act_fn=resnet_act_fn,
|
130 |
+
resnet_groups=resnet_groups,
|
131 |
+
downsample_padding=downsample_padding,
|
132 |
+
cross_attention_dim=cross_attention_dim,
|
133 |
+
num_attention_heads=num_attention_heads,
|
134 |
+
dual_cross_attention=dual_cross_attention,
|
135 |
+
use_linear_projection=use_linear_projection,
|
136 |
+
only_cross_attention=only_cross_attention,
|
137 |
+
upcast_attention=upcast_attention,
|
138 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
139 |
+
temporal_num_attention_heads=temporal_num_attention_heads,
|
140 |
+
temporal_max_seq_length=temporal_max_seq_length,
|
141 |
+
)
|
142 |
+
elif down_block_type == "DownBlockSpatioTemporal":
|
143 |
+
# added for SDV
|
144 |
+
return DownBlockSpatioTemporal(
|
145 |
+
num_layers=num_layers,
|
146 |
+
in_channels=in_channels,
|
147 |
+
out_channels=out_channels,
|
148 |
+
temb_channels=temb_channels,
|
149 |
+
add_downsample=add_downsample,
|
150 |
+
)
|
151 |
+
elif down_block_type == "CrossAttnDownBlockSpatioTemporal":
|
152 |
+
# added for SDV
|
153 |
+
if cross_attention_dim is None:
|
154 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal")
|
155 |
+
return CrossAttnDownBlockSpatioTemporal(
|
156 |
+
in_channels=in_channels,
|
157 |
+
out_channels=out_channels,
|
158 |
+
temb_channels=temb_channels,
|
159 |
+
num_layers=num_layers,
|
160 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
161 |
+
add_downsample=add_downsample,
|
162 |
+
cross_attention_dim=cross_attention_dim,
|
163 |
+
num_attention_heads=num_attention_heads,
|
164 |
+
)
|
165 |
+
|
166 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
167 |
+
|
168 |
+
|
169 |
+
def get_up_block(
|
170 |
+
up_block_type: str,
|
171 |
+
num_layers: int,
|
172 |
+
in_channels: int,
|
173 |
+
out_channels: int,
|
174 |
+
prev_output_channel: int,
|
175 |
+
temb_channels: int,
|
176 |
+
add_upsample: bool,
|
177 |
+
resnet_eps: float,
|
178 |
+
resnet_act_fn: str,
|
179 |
+
num_attention_heads: int,
|
180 |
+
resolution_idx: Optional[int] = None,
|
181 |
+
resnet_groups: Optional[int] = None,
|
182 |
+
cross_attention_dim: Optional[int] = None,
|
183 |
+
dual_cross_attention: bool = False,
|
184 |
+
use_linear_projection: bool = True,
|
185 |
+
only_cross_attention: bool = False,
|
186 |
+
upcast_attention: bool = False,
|
187 |
+
resnet_time_scale_shift: str = "default",
|
188 |
+
temporal_num_attention_heads: int = 8,
|
189 |
+
temporal_cross_attention_dim: Optional[int] = None,
|
190 |
+
temporal_max_seq_length: int = 32,
|
191 |
+
transformer_layers_per_block: int = 1,
|
192 |
+
dropout: float = 0.0,
|
193 |
+
) -> Union[
|
194 |
+
"UpBlock3D",
|
195 |
+
"CrossAttnUpBlock3D",
|
196 |
+
"UpBlockMotion",
|
197 |
+
"CrossAttnUpBlockMotion",
|
198 |
+
"UpBlockSpatioTemporal",
|
199 |
+
"CrossAttnUpBlockSpatioTemporal",
|
200 |
+
]:
|
201 |
+
if up_block_type == "UpBlock3D":
|
202 |
+
return UpBlock3D(
|
203 |
+
num_layers=num_layers,
|
204 |
+
in_channels=in_channels,
|
205 |
+
out_channels=out_channels,
|
206 |
+
prev_output_channel=prev_output_channel,
|
207 |
+
temb_channels=temb_channels,
|
208 |
+
add_upsample=add_upsample,
|
209 |
+
resnet_eps=resnet_eps,
|
210 |
+
resnet_act_fn=resnet_act_fn,
|
211 |
+
resnet_groups=resnet_groups,
|
212 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
213 |
+
resolution_idx=resolution_idx,
|
214 |
+
)
|
215 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
216 |
+
if cross_attention_dim is None:
|
217 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
218 |
+
return CrossAttnUpBlock3D(
|
219 |
+
num_layers=num_layers,
|
220 |
+
in_channels=in_channels,
|
221 |
+
out_channels=out_channels,
|
222 |
+
prev_output_channel=prev_output_channel,
|
223 |
+
temb_channels=temb_channels,
|
224 |
+
add_upsample=add_upsample,
|
225 |
+
resnet_eps=resnet_eps,
|
226 |
+
resnet_act_fn=resnet_act_fn,
|
227 |
+
resnet_groups=resnet_groups,
|
228 |
+
cross_attention_dim=cross_attention_dim,
|
229 |
+
num_attention_heads=num_attention_heads,
|
230 |
+
dual_cross_attention=dual_cross_attention,
|
231 |
+
use_linear_projection=use_linear_projection,
|
232 |
+
only_cross_attention=only_cross_attention,
|
233 |
+
upcast_attention=upcast_attention,
|
234 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
235 |
+
resolution_idx=resolution_idx,
|
236 |
+
)
|
237 |
+
if up_block_type == "UpBlockMotion":
|
238 |
+
return UpBlockMotion(
|
239 |
+
num_layers=num_layers,
|
240 |
+
in_channels=in_channels,
|
241 |
+
out_channels=out_channels,
|
242 |
+
prev_output_channel=prev_output_channel,
|
243 |
+
temb_channels=temb_channels,
|
244 |
+
add_upsample=add_upsample,
|
245 |
+
resnet_eps=resnet_eps,
|
246 |
+
resnet_act_fn=resnet_act_fn,
|
247 |
+
resnet_groups=resnet_groups,
|
248 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
249 |
+
resolution_idx=resolution_idx,
|
250 |
+
temporal_num_attention_heads=temporal_num_attention_heads,
|
251 |
+
temporal_max_seq_length=temporal_max_seq_length,
|
252 |
+
)
|
253 |
+
elif up_block_type == "CrossAttnUpBlockMotion":
|
254 |
+
if cross_attention_dim is None:
|
255 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMotion")
|
256 |
+
return CrossAttnUpBlockMotion(
|
257 |
+
num_layers=num_layers,
|
258 |
+
in_channels=in_channels,
|
259 |
+
out_channels=out_channels,
|
260 |
+
prev_output_channel=prev_output_channel,
|
261 |
+
temb_channels=temb_channels,
|
262 |
+
add_upsample=add_upsample,
|
263 |
+
resnet_eps=resnet_eps,
|
264 |
+
resnet_act_fn=resnet_act_fn,
|
265 |
+
resnet_groups=resnet_groups,
|
266 |
+
cross_attention_dim=cross_attention_dim,
|
267 |
+
num_attention_heads=num_attention_heads,
|
268 |
+
dual_cross_attention=dual_cross_attention,
|
269 |
+
use_linear_projection=use_linear_projection,
|
270 |
+
only_cross_attention=only_cross_attention,
|
271 |
+
upcast_attention=upcast_attention,
|
272 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
273 |
+
resolution_idx=resolution_idx,
|
274 |
+
temporal_num_attention_heads=temporal_num_attention_heads,
|
275 |
+
temporal_max_seq_length=temporal_max_seq_length,
|
276 |
+
)
|
277 |
+
elif up_block_type == "UpBlockSpatioTemporal":
|
278 |
+
# added for SDV
|
279 |
+
return UpBlockSpatioTemporal(
|
280 |
+
num_layers=num_layers,
|
281 |
+
in_channels=in_channels,
|
282 |
+
out_channels=out_channels,
|
283 |
+
prev_output_channel=prev_output_channel,
|
284 |
+
temb_channels=temb_channels,
|
285 |
+
resolution_idx=resolution_idx,
|
286 |
+
add_upsample=add_upsample,
|
287 |
+
)
|
288 |
+
elif up_block_type == "CrossAttnUpBlockSpatioTemporal":
|
289 |
+
# added for SDV
|
290 |
+
if cross_attention_dim is None:
|
291 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal")
|
292 |
+
return CrossAttnUpBlockSpatioTemporal(
|
293 |
+
in_channels=in_channels,
|
294 |
+
out_channels=out_channels,
|
295 |
+
prev_output_channel=prev_output_channel,
|
296 |
+
temb_channels=temb_channels,
|
297 |
+
num_layers=num_layers,
|
298 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
299 |
+
add_upsample=add_upsample,
|
300 |
+
cross_attention_dim=cross_attention_dim,
|
301 |
+
num_attention_heads=num_attention_heads,
|
302 |
+
resolution_idx=resolution_idx,
|
303 |
+
)
|
304 |
+
|
305 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
306 |
+
|
307 |
+
|
308 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
in_channels: int,
|
312 |
+
temb_channels: int,
|
313 |
+
dropout: float = 0.0,
|
314 |
+
num_layers: int = 1,
|
315 |
+
resnet_eps: float = 1e-6,
|
316 |
+
resnet_time_scale_shift: str = "default",
|
317 |
+
resnet_act_fn: str = "swish",
|
318 |
+
resnet_groups: int = 32,
|
319 |
+
resnet_pre_norm: bool = True,
|
320 |
+
num_attention_heads: int = 1,
|
321 |
+
output_scale_factor: float = 1.0,
|
322 |
+
cross_attention_dim: int = 1280,
|
323 |
+
dual_cross_attention: bool = False,
|
324 |
+
use_linear_projection: bool = True,
|
325 |
+
upcast_attention: bool = False,
|
326 |
+
):
|
327 |
+
super().__init__()
|
328 |
+
|
329 |
+
self.has_cross_attention = True
|
330 |
+
self.num_attention_heads = num_attention_heads
|
331 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
332 |
+
|
333 |
+
# there is always at least one resnet
|
334 |
+
resnets = [
|
335 |
+
ResnetBlock2D(
|
336 |
+
in_channels=in_channels,
|
337 |
+
out_channels=in_channels,
|
338 |
+
temb_channels=temb_channels,
|
339 |
+
eps=resnet_eps,
|
340 |
+
groups=resnet_groups,
|
341 |
+
dropout=dropout,
|
342 |
+
time_embedding_norm=resnet_time_scale_shift,
|
343 |
+
non_linearity=resnet_act_fn,
|
344 |
+
output_scale_factor=output_scale_factor,
|
345 |
+
pre_norm=resnet_pre_norm,
|
346 |
+
)
|
347 |
+
]
|
348 |
+
temp_convs = [
|
349 |
+
TemporalConvLayer(
|
350 |
+
in_channels,
|
351 |
+
in_channels,
|
352 |
+
dropout=0.1,
|
353 |
+
norm_num_groups=resnet_groups,
|
354 |
+
)
|
355 |
+
]
|
356 |
+
attentions = []
|
357 |
+
temp_attentions = []
|
358 |
+
|
359 |
+
for _ in range(num_layers):
|
360 |
+
attentions.append(
|
361 |
+
Transformer2DModel(
|
362 |
+
in_channels // num_attention_heads,
|
363 |
+
num_attention_heads,
|
364 |
+
in_channels=in_channels,
|
365 |
+
num_layers=1,
|
366 |
+
cross_attention_dim=cross_attention_dim,
|
367 |
+
norm_num_groups=resnet_groups,
|
368 |
+
use_linear_projection=use_linear_projection,
|
369 |
+
upcast_attention=upcast_attention,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
temp_attentions.append(
|
373 |
+
TransformerTemporalModel(
|
374 |
+
in_channels // num_attention_heads,
|
375 |
+
num_attention_heads,
|
376 |
+
in_channels=in_channels,
|
377 |
+
num_layers=1,
|
378 |
+
cross_attention_dim=cross_attention_dim,
|
379 |
+
norm_num_groups=resnet_groups,
|
380 |
+
)
|
381 |
+
)
|
382 |
+
resnets.append(
|
383 |
+
ResnetBlock2D(
|
384 |
+
in_channels=in_channels,
|
385 |
+
out_channels=in_channels,
|
386 |
+
temb_channels=temb_channels,
|
387 |
+
eps=resnet_eps,
|
388 |
+
groups=resnet_groups,
|
389 |
+
dropout=dropout,
|
390 |
+
time_embedding_norm=resnet_time_scale_shift,
|
391 |
+
non_linearity=resnet_act_fn,
|
392 |
+
output_scale_factor=output_scale_factor,
|
393 |
+
pre_norm=resnet_pre_norm,
|
394 |
+
)
|
395 |
+
)
|
396 |
+
temp_convs.append(
|
397 |
+
TemporalConvLayer(
|
398 |
+
in_channels,
|
399 |
+
in_channels,
|
400 |
+
dropout=0.1,
|
401 |
+
norm_num_groups=resnet_groups,
|
402 |
+
)
|
403 |
+
)
|
404 |
+
|
405 |
+
self.resnets = nn.ModuleList(resnets)
|
406 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
407 |
+
self.attentions = nn.ModuleList(attentions)
|
408 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
409 |
+
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
hidden_states: torch.FloatTensor,
|
413 |
+
temb: Optional[torch.FloatTensor] = None,
|
414 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
415 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
416 |
+
num_frames: int = 1,
|
417 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
418 |
+
) -> torch.FloatTensor:
|
419 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
420 |
+
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
|
421 |
+
for attn, temp_attn, resnet, temp_conv in zip(
|
422 |
+
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
|
423 |
+
):
|
424 |
+
hidden_states = attn(
|
425 |
+
hidden_states,
|
426 |
+
encoder_hidden_states=encoder_hidden_states,
|
427 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
428 |
+
return_dict=False,
|
429 |
+
)[0]
|
430 |
+
hidden_states = temp_attn(
|
431 |
+
hidden_states,
|
432 |
+
num_frames=num_frames,
|
433 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
434 |
+
return_dict=False,
|
435 |
+
)[0]
|
436 |
+
hidden_states = resnet(hidden_states, temb)
|
437 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
438 |
+
|
439 |
+
return hidden_states
|
440 |
+
|
441 |
+
|
442 |
+
class CrossAttnDownBlock3D(nn.Module):
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
in_channels: int,
|
446 |
+
out_channels: int,
|
447 |
+
temb_channels: int,
|
448 |
+
dropout: float = 0.0,
|
449 |
+
num_layers: int = 1,
|
450 |
+
resnet_eps: float = 1e-6,
|
451 |
+
resnet_time_scale_shift: str = "default",
|
452 |
+
resnet_act_fn: str = "swish",
|
453 |
+
resnet_groups: int = 32,
|
454 |
+
resnet_pre_norm: bool = True,
|
455 |
+
num_attention_heads: int = 1,
|
456 |
+
cross_attention_dim: int = 1280,
|
457 |
+
output_scale_factor: float = 1.0,
|
458 |
+
downsample_padding: int = 1,
|
459 |
+
add_downsample: bool = True,
|
460 |
+
dual_cross_attention: bool = False,
|
461 |
+
use_linear_projection: bool = False,
|
462 |
+
only_cross_attention: bool = False,
|
463 |
+
upcast_attention: bool = False,
|
464 |
+
):
|
465 |
+
super().__init__()
|
466 |
+
resnets = []
|
467 |
+
attentions = []
|
468 |
+
temp_attentions = []
|
469 |
+
temp_convs = []
|
470 |
+
|
471 |
+
self.has_cross_attention = True
|
472 |
+
self.num_attention_heads = num_attention_heads
|
473 |
+
|
474 |
+
for i in range(num_layers):
|
475 |
+
in_channels = in_channels if i == 0 else out_channels
|
476 |
+
resnets.append(
|
477 |
+
ResnetBlock2D(
|
478 |
+
in_channels=in_channels,
|
479 |
+
out_channels=out_channels,
|
480 |
+
temb_channels=temb_channels,
|
481 |
+
eps=resnet_eps,
|
482 |
+
groups=resnet_groups,
|
483 |
+
dropout=dropout,
|
484 |
+
time_embedding_norm=resnet_time_scale_shift,
|
485 |
+
non_linearity=resnet_act_fn,
|
486 |
+
output_scale_factor=output_scale_factor,
|
487 |
+
pre_norm=resnet_pre_norm,
|
488 |
+
)
|
489 |
+
)
|
490 |
+
temp_convs.append(
|
491 |
+
TemporalConvLayer(
|
492 |
+
out_channels,
|
493 |
+
out_channels,
|
494 |
+
dropout=0.1,
|
495 |
+
norm_num_groups=resnet_groups,
|
496 |
+
)
|
497 |
+
)
|
498 |
+
attentions.append(
|
499 |
+
Transformer2DModel(
|
500 |
+
out_channels // num_attention_heads,
|
501 |
+
num_attention_heads,
|
502 |
+
in_channels=out_channels,
|
503 |
+
num_layers=1,
|
504 |
+
cross_attention_dim=cross_attention_dim,
|
505 |
+
norm_num_groups=resnet_groups,
|
506 |
+
use_linear_projection=use_linear_projection,
|
507 |
+
only_cross_attention=only_cross_attention,
|
508 |
+
upcast_attention=upcast_attention,
|
509 |
+
)
|
510 |
+
)
|
511 |
+
temp_attentions.append(
|
512 |
+
TransformerTemporalModel(
|
513 |
+
out_channels // num_attention_heads,
|
514 |
+
num_attention_heads,
|
515 |
+
in_channels=out_channels,
|
516 |
+
num_layers=1,
|
517 |
+
cross_attention_dim=cross_attention_dim,
|
518 |
+
norm_num_groups=resnet_groups,
|
519 |
+
)
|
520 |
+
)
|
521 |
+
self.resnets = nn.ModuleList(resnets)
|
522 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
523 |
+
self.attentions = nn.ModuleList(attentions)
|
524 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
525 |
+
|
526 |
+
if add_downsample:
|
527 |
+
self.downsamplers = nn.ModuleList(
|
528 |
+
[
|
529 |
+
Downsample2D(
|
530 |
+
out_channels,
|
531 |
+
use_conv=True,
|
532 |
+
out_channels=out_channels,
|
533 |
+
padding=downsample_padding,
|
534 |
+
name="op",
|
535 |
+
)
|
536 |
+
]
|
537 |
+
)
|
538 |
+
else:
|
539 |
+
self.downsamplers = None
|
540 |
+
|
541 |
+
self.gradient_checkpointing = False
|
542 |
+
|
543 |
+
def forward(
|
544 |
+
self,
|
545 |
+
hidden_states: torch.FloatTensor,
|
546 |
+
temb: Optional[torch.FloatTensor] = None,
|
547 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
548 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
549 |
+
num_frames: int = 1,
|
550 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
551 |
+
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
552 |
+
# TODO(Patrick, William) - attention mask is not used
|
553 |
+
output_states = ()
|
554 |
+
|
555 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
556 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
557 |
+
):
|
558 |
+
hidden_states = resnet(hidden_states, temb)
|
559 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
560 |
+
hidden_states = attn(
|
561 |
+
hidden_states,
|
562 |
+
encoder_hidden_states=encoder_hidden_states,
|
563 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
564 |
+
return_dict=False,
|
565 |
+
)[0]
|
566 |
+
hidden_states = temp_attn(
|
567 |
+
hidden_states,
|
568 |
+
num_frames=num_frames,
|
569 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
570 |
+
return_dict=False,
|
571 |
+
)[0]
|
572 |
+
|
573 |
+
output_states += (hidden_states,)
|
574 |
+
|
575 |
+
if self.downsamplers is not None:
|
576 |
+
for downsampler in self.downsamplers:
|
577 |
+
hidden_states = downsampler(hidden_states)
|
578 |
+
|
579 |
+
output_states += (hidden_states,)
|
580 |
+
|
581 |
+
return hidden_states, output_states
|
582 |
+
|
583 |
+
|
584 |
+
class DownBlock3D(nn.Module):
|
585 |
+
def __init__(
|
586 |
+
self,
|
587 |
+
in_channels: int,
|
588 |
+
out_channels: int,
|
589 |
+
temb_channels: int,
|
590 |
+
dropout: float = 0.0,
|
591 |
+
num_layers: int = 1,
|
592 |
+
resnet_eps: float = 1e-6,
|
593 |
+
resnet_time_scale_shift: str = "default",
|
594 |
+
resnet_act_fn: str = "swish",
|
595 |
+
resnet_groups: int = 32,
|
596 |
+
resnet_pre_norm: bool = True,
|
597 |
+
output_scale_factor: float = 1.0,
|
598 |
+
add_downsample: bool = True,
|
599 |
+
downsample_padding: int = 1,
|
600 |
+
):
|
601 |
+
super().__init__()
|
602 |
+
resnets = []
|
603 |
+
temp_convs = []
|
604 |
+
|
605 |
+
for i in range(num_layers):
|
606 |
+
in_channels = in_channels if i == 0 else out_channels
|
607 |
+
resnets.append(
|
608 |
+
ResnetBlock2D(
|
609 |
+
in_channels=in_channels,
|
610 |
+
out_channels=out_channels,
|
611 |
+
temb_channels=temb_channels,
|
612 |
+
eps=resnet_eps,
|
613 |
+
groups=resnet_groups,
|
614 |
+
dropout=dropout,
|
615 |
+
time_embedding_norm=resnet_time_scale_shift,
|
616 |
+
non_linearity=resnet_act_fn,
|
617 |
+
output_scale_factor=output_scale_factor,
|
618 |
+
pre_norm=resnet_pre_norm,
|
619 |
+
)
|
620 |
+
)
|
621 |
+
temp_convs.append(
|
622 |
+
TemporalConvLayer(
|
623 |
+
out_channels,
|
624 |
+
out_channels,
|
625 |
+
dropout=0.1,
|
626 |
+
norm_num_groups=resnet_groups,
|
627 |
+
)
|
628 |
+
)
|
629 |
+
|
630 |
+
self.resnets = nn.ModuleList(resnets)
|
631 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
632 |
+
|
633 |
+
if add_downsample:
|
634 |
+
self.downsamplers = nn.ModuleList(
|
635 |
+
[
|
636 |
+
Downsample2D(
|
637 |
+
out_channels,
|
638 |
+
use_conv=True,
|
639 |
+
out_channels=out_channels,
|
640 |
+
padding=downsample_padding,
|
641 |
+
name="op",
|
642 |
+
)
|
643 |
+
]
|
644 |
+
)
|
645 |
+
else:
|
646 |
+
self.downsamplers = None
|
647 |
+
|
648 |
+
self.gradient_checkpointing = False
|
649 |
+
|
650 |
+
def forward(
|
651 |
+
self,
|
652 |
+
hidden_states: torch.FloatTensor,
|
653 |
+
temb: Optional[torch.FloatTensor] = None,
|
654 |
+
num_frames: int = 1,
|
655 |
+
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
656 |
+
output_states = ()
|
657 |
+
|
658 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
659 |
+
hidden_states = resnet(hidden_states, temb)
|
660 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
661 |
+
|
662 |
+
output_states += (hidden_states,)
|
663 |
+
|
664 |
+
if self.downsamplers is not None:
|
665 |
+
for downsampler in self.downsamplers:
|
666 |
+
hidden_states = downsampler(hidden_states)
|
667 |
+
|
668 |
+
output_states += (hidden_states,)
|
669 |
+
|
670 |
+
return hidden_states, output_states
|
671 |
+
|
672 |
+
|
673 |
+
class CrossAttnUpBlock3D(nn.Module):
|
674 |
+
def __init__(
|
675 |
+
self,
|
676 |
+
in_channels: int,
|
677 |
+
out_channels: int,
|
678 |
+
prev_output_channel: int,
|
679 |
+
temb_channels: int,
|
680 |
+
dropout: float = 0.0,
|
681 |
+
num_layers: int = 1,
|
682 |
+
resnet_eps: float = 1e-6,
|
683 |
+
resnet_time_scale_shift: str = "default",
|
684 |
+
resnet_act_fn: str = "swish",
|
685 |
+
resnet_groups: int = 32,
|
686 |
+
resnet_pre_norm: bool = True,
|
687 |
+
num_attention_heads: int = 1,
|
688 |
+
cross_attention_dim: int = 1280,
|
689 |
+
output_scale_factor: float = 1.0,
|
690 |
+
add_upsample: bool = True,
|
691 |
+
dual_cross_attention: bool = False,
|
692 |
+
use_linear_projection: bool = False,
|
693 |
+
only_cross_attention: bool = False,
|
694 |
+
upcast_attention: bool = False,
|
695 |
+
resolution_idx: Optional[int] = None,
|
696 |
+
):
|
697 |
+
super().__init__()
|
698 |
+
resnets = []
|
699 |
+
temp_convs = []
|
700 |
+
attentions = []
|
701 |
+
temp_attentions = []
|
702 |
+
|
703 |
+
self.has_cross_attention = True
|
704 |
+
self.num_attention_heads = num_attention_heads
|
705 |
+
|
706 |
+
for i in range(num_layers):
|
707 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
708 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
709 |
+
|
710 |
+
resnets.append(
|
711 |
+
ResnetBlock2D(
|
712 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
713 |
+
out_channels=out_channels,
|
714 |
+
temb_channels=temb_channels,
|
715 |
+
eps=resnet_eps,
|
716 |
+
groups=resnet_groups,
|
717 |
+
dropout=dropout,
|
718 |
+
time_embedding_norm=resnet_time_scale_shift,
|
719 |
+
non_linearity=resnet_act_fn,
|
720 |
+
output_scale_factor=output_scale_factor,
|
721 |
+
pre_norm=resnet_pre_norm,
|
722 |
+
)
|
723 |
+
)
|
724 |
+
temp_convs.append(
|
725 |
+
TemporalConvLayer(
|
726 |
+
out_channels,
|
727 |
+
out_channels,
|
728 |
+
dropout=0.1,
|
729 |
+
norm_num_groups=resnet_groups,
|
730 |
+
)
|
731 |
+
)
|
732 |
+
attentions.append(
|
733 |
+
Transformer2DModel(
|
734 |
+
out_channels // num_attention_heads,
|
735 |
+
num_attention_heads,
|
736 |
+
in_channels=out_channels,
|
737 |
+
num_layers=1,
|
738 |
+
cross_attention_dim=cross_attention_dim,
|
739 |
+
norm_num_groups=resnet_groups,
|
740 |
+
use_linear_projection=use_linear_projection,
|
741 |
+
only_cross_attention=only_cross_attention,
|
742 |
+
upcast_attention=upcast_attention,
|
743 |
+
)
|
744 |
+
)
|
745 |
+
temp_attentions.append(
|
746 |
+
TransformerTemporalModel(
|
747 |
+
out_channels // num_attention_heads,
|
748 |
+
num_attention_heads,
|
749 |
+
in_channels=out_channels,
|
750 |
+
num_layers=1,
|
751 |
+
cross_attention_dim=cross_attention_dim,
|
752 |
+
norm_num_groups=resnet_groups,
|
753 |
+
)
|
754 |
+
)
|
755 |
+
self.resnets = nn.ModuleList(resnets)
|
756 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
757 |
+
self.attentions = nn.ModuleList(attentions)
|
758 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
759 |
+
|
760 |
+
if add_upsample:
|
761 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
762 |
+
else:
|
763 |
+
self.upsamplers = None
|
764 |
+
|
765 |
+
self.gradient_checkpointing = False
|
766 |
+
self.resolution_idx = resolution_idx
|
767 |
+
|
768 |
+
def forward(
|
769 |
+
self,
|
770 |
+
hidden_states: torch.FloatTensor,
|
771 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
772 |
+
temb: Optional[torch.FloatTensor] = None,
|
773 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
774 |
+
upsample_size: Optional[int] = None,
|
775 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
776 |
+
num_frames: int = 1,
|
777 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
778 |
+
) -> torch.FloatTensor:
|
779 |
+
is_freeu_enabled = (
|
780 |
+
getattr(self, "s1", None)
|
781 |
+
and getattr(self, "s2", None)
|
782 |
+
and getattr(self, "b1", None)
|
783 |
+
and getattr(self, "b2", None)
|
784 |
+
)
|
785 |
+
|
786 |
+
# TODO(Patrick, William) - attention mask is not used
|
787 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
788 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
789 |
+
):
|
790 |
+
# pop res hidden states
|
791 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
792 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
793 |
+
|
794 |
+
# FreeU: Only operate on the first two stages
|
795 |
+
if is_freeu_enabled:
|
796 |
+
hidden_states, res_hidden_states = apply_freeu(
|
797 |
+
self.resolution_idx,
|
798 |
+
hidden_states,
|
799 |
+
res_hidden_states,
|
800 |
+
s1=self.s1,
|
801 |
+
s2=self.s2,
|
802 |
+
b1=self.b1,
|
803 |
+
b2=self.b2,
|
804 |
+
)
|
805 |
+
|
806 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
807 |
+
|
808 |
+
hidden_states = resnet(hidden_states, temb)
|
809 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
810 |
+
hidden_states = attn(
|
811 |
+
hidden_states,
|
812 |
+
encoder_hidden_states=encoder_hidden_states,
|
813 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
814 |
+
return_dict=False,
|
815 |
+
)[0]
|
816 |
+
hidden_states = temp_attn(
|
817 |
+
hidden_states,
|
818 |
+
num_frames=num_frames,
|
819 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
820 |
+
return_dict=False,
|
821 |
+
)[0]
|
822 |
+
|
823 |
+
if self.upsamplers is not None:
|
824 |
+
for upsampler in self.upsamplers:
|
825 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
826 |
+
|
827 |
+
return hidden_states
|
828 |
+
|
829 |
+
|
830 |
+
class UpBlock3D(nn.Module):
|
831 |
+
def __init__(
|
832 |
+
self,
|
833 |
+
in_channels: int,
|
834 |
+
prev_output_channel: int,
|
835 |
+
out_channels: int,
|
836 |
+
temb_channels: int,
|
837 |
+
dropout: float = 0.0,
|
838 |
+
num_layers: int = 1,
|
839 |
+
resnet_eps: float = 1e-6,
|
840 |
+
resnet_time_scale_shift: str = "default",
|
841 |
+
resnet_act_fn: str = "swish",
|
842 |
+
resnet_groups: int = 32,
|
843 |
+
resnet_pre_norm: bool = True,
|
844 |
+
output_scale_factor: float = 1.0,
|
845 |
+
add_upsample: bool = True,
|
846 |
+
resolution_idx: Optional[int] = None,
|
847 |
+
):
|
848 |
+
super().__init__()
|
849 |
+
resnets = []
|
850 |
+
temp_convs = []
|
851 |
+
|
852 |
+
for i in range(num_layers):
|
853 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
854 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
855 |
+
|
856 |
+
resnets.append(
|
857 |
+
ResnetBlock2D(
|
858 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
859 |
+
out_channels=out_channels,
|
860 |
+
temb_channels=temb_channels,
|
861 |
+
eps=resnet_eps,
|
862 |
+
groups=resnet_groups,
|
863 |
+
dropout=dropout,
|
864 |
+
time_embedding_norm=resnet_time_scale_shift,
|
865 |
+
non_linearity=resnet_act_fn,
|
866 |
+
output_scale_factor=output_scale_factor,
|
867 |
+
pre_norm=resnet_pre_norm,
|
868 |
+
)
|
869 |
+
)
|
870 |
+
temp_convs.append(
|
871 |
+
TemporalConvLayer(
|
872 |
+
out_channels,
|
873 |
+
out_channels,
|
874 |
+
dropout=0.1,
|
875 |
+
norm_num_groups=resnet_groups,
|
876 |
+
)
|
877 |
+
)
|
878 |
+
|
879 |
+
self.resnets = nn.ModuleList(resnets)
|
880 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
881 |
+
|
882 |
+
if add_upsample:
|
883 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
884 |
+
else:
|
885 |
+
self.upsamplers = None
|
886 |
+
|
887 |
+
self.gradient_checkpointing = False
|
888 |
+
self.resolution_idx = resolution_idx
|
889 |
+
|
890 |
+
def forward(
|
891 |
+
self,
|
892 |
+
hidden_states: torch.FloatTensor,
|
893 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
894 |
+
temb: Optional[torch.FloatTensor] = None,
|
895 |
+
upsample_size: Optional[int] = None,
|
896 |
+
num_frames: int = 1,
|
897 |
+
) -> torch.FloatTensor:
|
898 |
+
is_freeu_enabled = (
|
899 |
+
getattr(self, "s1", None)
|
900 |
+
and getattr(self, "s2", None)
|
901 |
+
and getattr(self, "b1", None)
|
902 |
+
and getattr(self, "b2", None)
|
903 |
+
)
|
904 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
905 |
+
# pop res hidden states
|
906 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
907 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
908 |
+
|
909 |
+
# FreeU: Only operate on the first two stages
|
910 |
+
if is_freeu_enabled:
|
911 |
+
hidden_states, res_hidden_states = apply_freeu(
|
912 |
+
self.resolution_idx,
|
913 |
+
hidden_states,
|
914 |
+
res_hidden_states,
|
915 |
+
s1=self.s1,
|
916 |
+
s2=self.s2,
|
917 |
+
b1=self.b1,
|
918 |
+
b2=self.b2,
|
919 |
+
)
|
920 |
+
|
921 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
922 |
+
|
923 |
+
hidden_states = resnet(hidden_states, temb)
|
924 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
925 |
+
|
926 |
+
if self.upsamplers is not None:
|
927 |
+
for upsampler in self.upsamplers:
|
928 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
929 |
+
|
930 |
+
return hidden_states
|
931 |
+
|
932 |
+
|
933 |
+
class DownBlockMotion(nn.Module):
|
934 |
+
def __init__(
|
935 |
+
self,
|
936 |
+
in_channels: int,
|
937 |
+
out_channels: int,
|
938 |
+
temb_channels: int,
|
939 |
+
dropout: float = 0.0,
|
940 |
+
num_layers: int = 1,
|
941 |
+
resnet_eps: float = 1e-6,
|
942 |
+
resnet_time_scale_shift: str = "default",
|
943 |
+
resnet_act_fn: str = "swish",
|
944 |
+
resnet_groups: int = 32,
|
945 |
+
resnet_pre_norm: bool = True,
|
946 |
+
output_scale_factor: float = 1.0,
|
947 |
+
add_downsample: bool = True,
|
948 |
+
downsample_padding: int = 1,
|
949 |
+
temporal_num_attention_heads: int = 1,
|
950 |
+
temporal_cross_attention_dim: Optional[int] = None,
|
951 |
+
temporal_max_seq_length: int = 32,
|
952 |
+
):
|
953 |
+
super().__init__()
|
954 |
+
resnets = []
|
955 |
+
motion_modules = []
|
956 |
+
|
957 |
+
for i in range(num_layers):
|
958 |
+
in_channels = in_channels if i == 0 else out_channels
|
959 |
+
resnets.append(
|
960 |
+
ResnetBlock2D(
|
961 |
+
in_channels=in_channels,
|
962 |
+
out_channels=out_channels,
|
963 |
+
temb_channels=temb_channels,
|
964 |
+
eps=resnet_eps,
|
965 |
+
groups=resnet_groups,
|
966 |
+
dropout=dropout,
|
967 |
+
time_embedding_norm=resnet_time_scale_shift,
|
968 |
+
non_linearity=resnet_act_fn,
|
969 |
+
output_scale_factor=output_scale_factor,
|
970 |
+
pre_norm=resnet_pre_norm,
|
971 |
+
)
|
972 |
+
)
|
973 |
+
motion_modules.append(
|
974 |
+
TransformerTemporalModel(
|
975 |
+
num_attention_heads=temporal_num_attention_heads,
|
976 |
+
in_channels=out_channels,
|
977 |
+
norm_num_groups=resnet_groups,
|
978 |
+
cross_attention_dim=temporal_cross_attention_dim,
|
979 |
+
attention_bias=False,
|
980 |
+
activation_fn="geglu",
|
981 |
+
positional_embeddings="sinusoidal",
|
982 |
+
num_positional_embeddings=temporal_max_seq_length,
|
983 |
+
attention_head_dim=out_channels // temporal_num_attention_heads,
|
984 |
+
)
|
985 |
+
)
|
986 |
+
|
987 |
+
self.resnets = nn.ModuleList(resnets)
|
988 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
989 |
+
|
990 |
+
if add_downsample:
|
991 |
+
self.downsamplers = nn.ModuleList(
|
992 |
+
[
|
993 |
+
Downsample2D(
|
994 |
+
out_channels,
|
995 |
+
use_conv=True,
|
996 |
+
out_channels=out_channels,
|
997 |
+
padding=downsample_padding,
|
998 |
+
name="op",
|
999 |
+
)
|
1000 |
+
]
|
1001 |
+
)
|
1002 |
+
else:
|
1003 |
+
self.downsamplers = None
|
1004 |
+
|
1005 |
+
self.gradient_checkpointing = False
|
1006 |
+
|
1007 |
+
def forward(
|
1008 |
+
self,
|
1009 |
+
hidden_states: torch.FloatTensor,
|
1010 |
+
temb: Optional[torch.FloatTensor] = None,
|
1011 |
+
scale: float = 1.0,
|
1012 |
+
num_frames: int = 1,
|
1013 |
+
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
1014 |
+
output_states = ()
|
1015 |
+
|
1016 |
+
blocks = zip(self.resnets, self.motion_modules)
|
1017 |
+
for resnet, motion_module in blocks:
|
1018 |
+
if self.training and self.gradient_checkpointing:
|
1019 |
+
|
1020 |
+
def create_custom_forward(module):
|
1021 |
+
def custom_forward(*inputs):
|
1022 |
+
return module(*inputs)
|
1023 |
+
|
1024 |
+
return custom_forward
|
1025 |
+
|
1026 |
+
if is_torch_version(">=", "1.11.0"):
|
1027 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1028 |
+
create_custom_forward(resnet),
|
1029 |
+
hidden_states,
|
1030 |
+
temb,
|
1031 |
+
use_reentrant=False,
|
1032 |
+
)
|
1033 |
+
else:
|
1034 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1035 |
+
create_custom_forward(resnet), hidden_states, temb, scale
|
1036 |
+
)
|
1037 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1038 |
+
create_custom_forward(motion_module),
|
1039 |
+
hidden_states.requires_grad_(),
|
1040 |
+
temb,
|
1041 |
+
num_frames,
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
else:
|
1045 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1046 |
+
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0]
|
1047 |
+
|
1048 |
+
output_states = output_states + (hidden_states,)
|
1049 |
+
|
1050 |
+
if self.downsamplers is not None:
|
1051 |
+
for downsampler in self.downsamplers:
|
1052 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
1053 |
+
|
1054 |
+
output_states = output_states + (hidden_states,)
|
1055 |
+
|
1056 |
+
return hidden_states, output_states
|
1057 |
+
|
1058 |
+
|
1059 |
+
class CrossAttnDownBlockMotion(nn.Module):
|
1060 |
+
def __init__(
|
1061 |
+
self,
|
1062 |
+
in_channels: int,
|
1063 |
+
out_channels: int,
|
1064 |
+
temb_channels: int,
|
1065 |
+
dropout: float = 0.0,
|
1066 |
+
num_layers: int = 1,
|
1067 |
+
transformer_layers_per_block: int = 1,
|
1068 |
+
resnet_eps: float = 1e-6,
|
1069 |
+
resnet_time_scale_shift: str = "default",
|
1070 |
+
resnet_act_fn: str = "swish",
|
1071 |
+
resnet_groups: int = 32,
|
1072 |
+
resnet_pre_norm: bool = True,
|
1073 |
+
num_attention_heads: int = 1,
|
1074 |
+
cross_attention_dim: int = 1280,
|
1075 |
+
output_scale_factor: float = 1.0,
|
1076 |
+
downsample_padding: int = 1,
|
1077 |
+
add_downsample: bool = True,
|
1078 |
+
dual_cross_attention: bool = False,
|
1079 |
+
use_linear_projection: bool = False,
|
1080 |
+
only_cross_attention: bool = False,
|
1081 |
+
upcast_attention: bool = False,
|
1082 |
+
attention_type: str = "default",
|
1083 |
+
temporal_cross_attention_dim: Optional[int] = None,
|
1084 |
+
temporal_num_attention_heads: int = 8,
|
1085 |
+
temporal_max_seq_length: int = 32,
|
1086 |
+
):
|
1087 |
+
super().__init__()
|
1088 |
+
resnets = []
|
1089 |
+
attentions = []
|
1090 |
+
motion_modules = []
|
1091 |
+
|
1092 |
+
self.has_cross_attention = True
|
1093 |
+
self.num_attention_heads = num_attention_heads
|
1094 |
+
|
1095 |
+
for i in range(num_layers):
|
1096 |
+
in_channels = in_channels if i == 0 else out_channels
|
1097 |
+
resnets.append(
|
1098 |
+
ResnetBlock2D(
|
1099 |
+
in_channels=in_channels,
|
1100 |
+
out_channels=out_channels,
|
1101 |
+
temb_channels=temb_channels,
|
1102 |
+
eps=resnet_eps,
|
1103 |
+
groups=resnet_groups,
|
1104 |
+
dropout=dropout,
|
1105 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1106 |
+
non_linearity=resnet_act_fn,
|
1107 |
+
output_scale_factor=output_scale_factor,
|
1108 |
+
pre_norm=resnet_pre_norm,
|
1109 |
+
)
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
if not dual_cross_attention:
|
1113 |
+
attentions.append(
|
1114 |
+
Transformer2DModel(
|
1115 |
+
num_attention_heads,
|
1116 |
+
out_channels // num_attention_heads,
|
1117 |
+
in_channels=out_channels,
|
1118 |
+
num_layers=transformer_layers_per_block,
|
1119 |
+
cross_attention_dim=cross_attention_dim,
|
1120 |
+
norm_num_groups=resnet_groups,
|
1121 |
+
use_linear_projection=use_linear_projection,
|
1122 |
+
only_cross_attention=only_cross_attention,
|
1123 |
+
upcast_attention=upcast_attention,
|
1124 |
+
attention_type=attention_type,
|
1125 |
+
)
|
1126 |
+
)
|
1127 |
+
else:
|
1128 |
+
attentions.append(
|
1129 |
+
DualTransformer2DModel(
|
1130 |
+
num_attention_heads,
|
1131 |
+
out_channels // num_attention_heads,
|
1132 |
+
in_channels=out_channels,
|
1133 |
+
num_layers=1,
|
1134 |
+
cross_attention_dim=cross_attention_dim,
|
1135 |
+
norm_num_groups=resnet_groups,
|
1136 |
+
)
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
motion_modules.append(
|
1140 |
+
TransformerTemporalModel(
|
1141 |
+
num_attention_heads=temporal_num_attention_heads,
|
1142 |
+
in_channels=out_channels,
|
1143 |
+
norm_num_groups=resnet_groups,
|
1144 |
+
cross_attention_dim=temporal_cross_attention_dim,
|
1145 |
+
attention_bias=False,
|
1146 |
+
activation_fn="geglu",
|
1147 |
+
positional_embeddings="sinusoidal",
|
1148 |
+
num_positional_embeddings=temporal_max_seq_length,
|
1149 |
+
attention_head_dim=out_channels // temporal_num_attention_heads,
|
1150 |
+
)
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
self.attentions = nn.ModuleList(attentions)
|
1154 |
+
self.resnets = nn.ModuleList(resnets)
|
1155 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
1156 |
+
|
1157 |
+
if add_downsample:
|
1158 |
+
self.downsamplers = nn.ModuleList(
|
1159 |
+
[
|
1160 |
+
Downsample2D(
|
1161 |
+
out_channels,
|
1162 |
+
use_conv=True,
|
1163 |
+
out_channels=out_channels,
|
1164 |
+
padding=downsample_padding,
|
1165 |
+
name="op",
|
1166 |
+
)
|
1167 |
+
]
|
1168 |
+
)
|
1169 |
+
else:
|
1170 |
+
self.downsamplers = None
|
1171 |
+
|
1172 |
+
self.gradient_checkpointing = False
|
1173 |
+
|
1174 |
+
def forward(
|
1175 |
+
self,
|
1176 |
+
hidden_states: torch.FloatTensor,
|
1177 |
+
temb: Optional[torch.FloatTensor] = None,
|
1178 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1179 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1180 |
+
num_frames: int = 1,
|
1181 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1182 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1183 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
1184 |
+
):
|
1185 |
+
output_states = ()
|
1186 |
+
|
1187 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1188 |
+
|
1189 |
+
blocks = list(zip(self.resnets, self.attentions, self.motion_modules))
|
1190 |
+
for i, (resnet, attn, motion_module) in enumerate(blocks):
|
1191 |
+
if self.training and self.gradient_checkpointing:
|
1192 |
+
|
1193 |
+
def create_custom_forward(module, return_dict=None):
|
1194 |
+
def custom_forward(*inputs):
|
1195 |
+
if return_dict is not None:
|
1196 |
+
return module(*inputs, return_dict=return_dict)
|
1197 |
+
else:
|
1198 |
+
return module(*inputs)
|
1199 |
+
|
1200 |
+
return custom_forward
|
1201 |
+
|
1202 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1203 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1204 |
+
create_custom_forward(resnet),
|
1205 |
+
hidden_states,
|
1206 |
+
temb,
|
1207 |
+
**ckpt_kwargs,
|
1208 |
+
)
|
1209 |
+
hidden_states = attn(
|
1210 |
+
hidden_states,
|
1211 |
+
encoder_hidden_states=encoder_hidden_states,
|
1212 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1213 |
+
attention_mask=attention_mask,
|
1214 |
+
encoder_attention_mask=encoder_attention_mask,
|
1215 |
+
return_dict=False,
|
1216 |
+
)[0]
|
1217 |
+
else:
|
1218 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
1219 |
+
hidden_states = attn(
|
1220 |
+
hidden_states,
|
1221 |
+
encoder_hidden_states=encoder_hidden_states,
|
1222 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1223 |
+
attention_mask=attention_mask,
|
1224 |
+
encoder_attention_mask=encoder_attention_mask,
|
1225 |
+
return_dict=False,
|
1226 |
+
)[0]
|
1227 |
+
hidden_states = motion_module(
|
1228 |
+
hidden_states,
|
1229 |
+
num_frames=num_frames,
|
1230 |
+
)[0]
|
1231 |
+
|
1232 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
1233 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
1234 |
+
hidden_states = hidden_states + additional_residuals
|
1235 |
+
|
1236 |
+
output_states = output_states + (hidden_states,)
|
1237 |
+
|
1238 |
+
if self.downsamplers is not None:
|
1239 |
+
for downsampler in self.downsamplers:
|
1240 |
+
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
1241 |
+
|
1242 |
+
output_states = output_states + (hidden_states,)
|
1243 |
+
|
1244 |
+
return hidden_states, output_states
|
1245 |
+
|
1246 |
+
|
1247 |
+
class CrossAttnUpBlockMotion(nn.Module):
|
1248 |
+
def __init__(
|
1249 |
+
self,
|
1250 |
+
in_channels: int,
|
1251 |
+
out_channels: int,
|
1252 |
+
prev_output_channel: int,
|
1253 |
+
temb_channels: int,
|
1254 |
+
resolution_idx: Optional[int] = None,
|
1255 |
+
dropout: float = 0.0,
|
1256 |
+
num_layers: int = 1,
|
1257 |
+
transformer_layers_per_block: int = 1,
|
1258 |
+
resnet_eps: float = 1e-6,
|
1259 |
+
resnet_time_scale_shift: str = "default",
|
1260 |
+
resnet_act_fn: str = "swish",
|
1261 |
+
resnet_groups: int = 32,
|
1262 |
+
resnet_pre_norm: bool = True,
|
1263 |
+
num_attention_heads: int = 1,
|
1264 |
+
cross_attention_dim: int = 1280,
|
1265 |
+
output_scale_factor: float = 1.0,
|
1266 |
+
add_upsample: bool = True,
|
1267 |
+
dual_cross_attention: bool = False,
|
1268 |
+
use_linear_projection: bool = False,
|
1269 |
+
only_cross_attention: bool = False,
|
1270 |
+
upcast_attention: bool = False,
|
1271 |
+
attention_type: str = "default",
|
1272 |
+
temporal_cross_attention_dim: Optional[int] = None,
|
1273 |
+
temporal_num_attention_heads: int = 8,
|
1274 |
+
temporal_max_seq_length: int = 32,
|
1275 |
+
):
|
1276 |
+
super().__init__()
|
1277 |
+
resnets = []
|
1278 |
+
attentions = []
|
1279 |
+
motion_modules = []
|
1280 |
+
|
1281 |
+
self.has_cross_attention = True
|
1282 |
+
self.num_attention_heads = num_attention_heads
|
1283 |
+
|
1284 |
+
for i in range(num_layers):
|
1285 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1286 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1287 |
+
|
1288 |
+
resnets.append(
|
1289 |
+
ResnetBlock2D(
|
1290 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1291 |
+
out_channels=out_channels,
|
1292 |
+
temb_channels=temb_channels,
|
1293 |
+
eps=resnet_eps,
|
1294 |
+
groups=resnet_groups,
|
1295 |
+
dropout=dropout,
|
1296 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1297 |
+
non_linearity=resnet_act_fn,
|
1298 |
+
output_scale_factor=output_scale_factor,
|
1299 |
+
pre_norm=resnet_pre_norm,
|
1300 |
+
)
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
if not dual_cross_attention:
|
1304 |
+
attentions.append(
|
1305 |
+
Transformer2DModel(
|
1306 |
+
num_attention_heads,
|
1307 |
+
out_channels // num_attention_heads,
|
1308 |
+
in_channels=out_channels,
|
1309 |
+
num_layers=transformer_layers_per_block,
|
1310 |
+
cross_attention_dim=cross_attention_dim,
|
1311 |
+
norm_num_groups=resnet_groups,
|
1312 |
+
use_linear_projection=use_linear_projection,
|
1313 |
+
only_cross_attention=only_cross_attention,
|
1314 |
+
upcast_attention=upcast_attention,
|
1315 |
+
attention_type=attention_type,
|
1316 |
+
)
|
1317 |
+
)
|
1318 |
+
else:
|
1319 |
+
attentions.append(
|
1320 |
+
DualTransformer2DModel(
|
1321 |
+
num_attention_heads,
|
1322 |
+
out_channels // num_attention_heads,
|
1323 |
+
in_channels=out_channels,
|
1324 |
+
num_layers=1,
|
1325 |
+
cross_attention_dim=cross_attention_dim,
|
1326 |
+
norm_num_groups=resnet_groups,
|
1327 |
+
)
|
1328 |
+
)
|
1329 |
+
motion_modules.append(
|
1330 |
+
TransformerTemporalModel(
|
1331 |
+
num_attention_heads=temporal_num_attention_heads,
|
1332 |
+
in_channels=out_channels,
|
1333 |
+
norm_num_groups=resnet_groups,
|
1334 |
+
cross_attention_dim=temporal_cross_attention_dim,
|
1335 |
+
attention_bias=False,
|
1336 |
+
activation_fn="geglu",
|
1337 |
+
positional_embeddings="sinusoidal",
|
1338 |
+
num_positional_embeddings=temporal_max_seq_length,
|
1339 |
+
attention_head_dim=out_channels // temporal_num_attention_heads,
|
1340 |
+
)
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
self.attentions = nn.ModuleList(attentions)
|
1344 |
+
self.resnets = nn.ModuleList(resnets)
|
1345 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
1346 |
+
|
1347 |
+
if add_upsample:
|
1348 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1349 |
+
else:
|
1350 |
+
self.upsamplers = None
|
1351 |
+
|
1352 |
+
self.gradient_checkpointing = False
|
1353 |
+
self.resolution_idx = resolution_idx
|
1354 |
+
|
1355 |
+
def forward(
|
1356 |
+
self,
|
1357 |
+
hidden_states: torch.FloatTensor,
|
1358 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1359 |
+
temb: Optional[torch.FloatTensor] = None,
|
1360 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1361 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1362 |
+
upsample_size: Optional[int] = None,
|
1363 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1364 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1365 |
+
num_frames: int = 1,
|
1366 |
+
) -> torch.FloatTensor:
|
1367 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1368 |
+
is_freeu_enabled = (
|
1369 |
+
getattr(self, "s1", None)
|
1370 |
+
and getattr(self, "s2", None)
|
1371 |
+
and getattr(self, "b1", None)
|
1372 |
+
and getattr(self, "b2", None)
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
blocks = zip(self.resnets, self.attentions, self.motion_modules)
|
1376 |
+
for resnet, attn, motion_module in blocks:
|
1377 |
+
# pop res hidden states
|
1378 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1379 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1380 |
+
|
1381 |
+
# FreeU: Only operate on the first two stages
|
1382 |
+
if is_freeu_enabled:
|
1383 |
+
hidden_states, res_hidden_states = apply_freeu(
|
1384 |
+
self.resolution_idx,
|
1385 |
+
hidden_states,
|
1386 |
+
res_hidden_states,
|
1387 |
+
s1=self.s1,
|
1388 |
+
s2=self.s2,
|
1389 |
+
b1=self.b1,
|
1390 |
+
b2=self.b2,
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1394 |
+
|
1395 |
+
if self.training and self.gradient_checkpointing:
|
1396 |
+
|
1397 |
+
def create_custom_forward(module, return_dict=None):
|
1398 |
+
def custom_forward(*inputs):
|
1399 |
+
if return_dict is not None:
|
1400 |
+
return module(*inputs, return_dict=return_dict)
|
1401 |
+
else:
|
1402 |
+
return module(*inputs)
|
1403 |
+
|
1404 |
+
return custom_forward
|
1405 |
+
|
1406 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1407 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1408 |
+
create_custom_forward(resnet),
|
1409 |
+
hidden_states,
|
1410 |
+
temb,
|
1411 |
+
**ckpt_kwargs,
|
1412 |
+
)
|
1413 |
+
hidden_states = attn(
|
1414 |
+
hidden_states,
|
1415 |
+
encoder_hidden_states=encoder_hidden_states,
|
1416 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1417 |
+
attention_mask=attention_mask,
|
1418 |
+
encoder_attention_mask=encoder_attention_mask,
|
1419 |
+
return_dict=False,
|
1420 |
+
)[0]
|
1421 |
+
else:
|
1422 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
1423 |
+
hidden_states = attn(
|
1424 |
+
hidden_states,
|
1425 |
+
encoder_hidden_states=encoder_hidden_states,
|
1426 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1427 |
+
attention_mask=attention_mask,
|
1428 |
+
encoder_attention_mask=encoder_attention_mask,
|
1429 |
+
return_dict=False,
|
1430 |
+
)[0]
|
1431 |
+
hidden_states = motion_module(
|
1432 |
+
hidden_states,
|
1433 |
+
num_frames=num_frames,
|
1434 |
+
)[0]
|
1435 |
+
|
1436 |
+
if self.upsamplers is not None:
|
1437 |
+
for upsampler in self.upsamplers:
|
1438 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
|
1439 |
+
|
1440 |
+
return hidden_states
|
1441 |
+
|
1442 |
+
|
1443 |
+
class UpBlockMotion(nn.Module):
|
1444 |
+
def __init__(
|
1445 |
+
self,
|
1446 |
+
in_channels: int,
|
1447 |
+
prev_output_channel: int,
|
1448 |
+
out_channels: int,
|
1449 |
+
temb_channels: int,
|
1450 |
+
resolution_idx: Optional[int] = None,
|
1451 |
+
dropout: float = 0.0,
|
1452 |
+
num_layers: int = 1,
|
1453 |
+
resnet_eps: float = 1e-6,
|
1454 |
+
resnet_time_scale_shift: str = "default",
|
1455 |
+
resnet_act_fn: str = "swish",
|
1456 |
+
resnet_groups: int = 32,
|
1457 |
+
resnet_pre_norm: bool = True,
|
1458 |
+
output_scale_factor: float = 1.0,
|
1459 |
+
add_upsample: bool = True,
|
1460 |
+
temporal_norm_num_groups: int = 32,
|
1461 |
+
temporal_cross_attention_dim: Optional[int] = None,
|
1462 |
+
temporal_num_attention_heads: int = 8,
|
1463 |
+
temporal_max_seq_length: int = 32,
|
1464 |
+
):
|
1465 |
+
super().__init__()
|
1466 |
+
resnets = []
|
1467 |
+
motion_modules = []
|
1468 |
+
|
1469 |
+
for i in range(num_layers):
|
1470 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1471 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1472 |
+
|
1473 |
+
resnets.append(
|
1474 |
+
ResnetBlock2D(
|
1475 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1476 |
+
out_channels=out_channels,
|
1477 |
+
temb_channels=temb_channels,
|
1478 |
+
eps=resnet_eps,
|
1479 |
+
groups=resnet_groups,
|
1480 |
+
dropout=dropout,
|
1481 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1482 |
+
non_linearity=resnet_act_fn,
|
1483 |
+
output_scale_factor=output_scale_factor,
|
1484 |
+
pre_norm=resnet_pre_norm,
|
1485 |
+
)
|
1486 |
+
)
|
1487 |
+
|
1488 |
+
motion_modules.append(
|
1489 |
+
TransformerTemporalModel(
|
1490 |
+
num_attention_heads=temporal_num_attention_heads,
|
1491 |
+
in_channels=out_channels,
|
1492 |
+
norm_num_groups=temporal_norm_num_groups,
|
1493 |
+
cross_attention_dim=temporal_cross_attention_dim,
|
1494 |
+
attention_bias=False,
|
1495 |
+
activation_fn="geglu",
|
1496 |
+
positional_embeddings="sinusoidal",
|
1497 |
+
num_positional_embeddings=temporal_max_seq_length,
|
1498 |
+
attention_head_dim=out_channels // temporal_num_attention_heads,
|
1499 |
+
)
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
self.resnets = nn.ModuleList(resnets)
|
1503 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
1504 |
+
|
1505 |
+
if add_upsample:
|
1506 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1507 |
+
else:
|
1508 |
+
self.upsamplers = None
|
1509 |
+
|
1510 |
+
self.gradient_checkpointing = False
|
1511 |
+
self.resolution_idx = resolution_idx
|
1512 |
+
|
1513 |
+
def forward(
|
1514 |
+
self,
|
1515 |
+
hidden_states: torch.FloatTensor,
|
1516 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1517 |
+
temb: Optional[torch.FloatTensor] = None,
|
1518 |
+
upsample_size=None,
|
1519 |
+
scale: float = 1.0,
|
1520 |
+
num_frames: int = 1,
|
1521 |
+
) -> torch.FloatTensor:
|
1522 |
+
is_freeu_enabled = (
|
1523 |
+
getattr(self, "s1", None)
|
1524 |
+
and getattr(self, "s2", None)
|
1525 |
+
and getattr(self, "b1", None)
|
1526 |
+
and getattr(self, "b2", None)
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
blocks = zip(self.resnets, self.motion_modules)
|
1530 |
+
|
1531 |
+
for resnet, motion_module in blocks:
|
1532 |
+
# pop res hidden states
|
1533 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1534 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1535 |
+
|
1536 |
+
# FreeU: Only operate on the first two stages
|
1537 |
+
if is_freeu_enabled:
|
1538 |
+
hidden_states, res_hidden_states = apply_freeu(
|
1539 |
+
self.resolution_idx,
|
1540 |
+
hidden_states,
|
1541 |
+
res_hidden_states,
|
1542 |
+
s1=self.s1,
|
1543 |
+
s2=self.s2,
|
1544 |
+
b1=self.b1,
|
1545 |
+
b2=self.b2,
|
1546 |
+
)
|
1547 |
+
|
1548 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1549 |
+
|
1550 |
+
if self.training and self.gradient_checkpointing:
|
1551 |
+
|
1552 |
+
def create_custom_forward(module):
|
1553 |
+
def custom_forward(*inputs):
|
1554 |
+
return module(*inputs)
|
1555 |
+
|
1556 |
+
return custom_forward
|
1557 |
+
|
1558 |
+
if is_torch_version(">=", "1.11.0"):
|
1559 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1560 |
+
create_custom_forward(resnet),
|
1561 |
+
hidden_states,
|
1562 |
+
temb,
|
1563 |
+
use_reentrant=False,
|
1564 |
+
)
|
1565 |
+
else:
|
1566 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1567 |
+
create_custom_forward(resnet), hidden_states, temb
|
1568 |
+
)
|
1569 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1570 |
+
create_custom_forward(resnet),
|
1571 |
+
hidden_states,
|
1572 |
+
temb,
|
1573 |
+
)
|
1574 |
+
|
1575 |
+
else:
|
1576 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1577 |
+
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0]
|
1578 |
+
|
1579 |
+
if self.upsamplers is not None:
|
1580 |
+
for upsampler in self.upsamplers:
|
1581 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
1582 |
+
|
1583 |
+
return hidden_states
|
1584 |
+
|
1585 |
+
|
1586 |
+
class UNetMidBlockCrossAttnMotion(nn.Module):
|
1587 |
+
def __init__(
|
1588 |
+
self,
|
1589 |
+
in_channels: int,
|
1590 |
+
temb_channels: int,
|
1591 |
+
dropout: float = 0.0,
|
1592 |
+
num_layers: int = 1,
|
1593 |
+
transformer_layers_per_block: int = 1,
|
1594 |
+
resnet_eps: float = 1e-6,
|
1595 |
+
resnet_time_scale_shift: str = "default",
|
1596 |
+
resnet_act_fn: str = "swish",
|
1597 |
+
resnet_groups: int = 32,
|
1598 |
+
resnet_pre_norm: bool = True,
|
1599 |
+
num_attention_heads: int = 1,
|
1600 |
+
output_scale_factor: float = 1.0,
|
1601 |
+
cross_attention_dim: int = 1280,
|
1602 |
+
dual_cross_attention: float = False,
|
1603 |
+
use_linear_projection: float = False,
|
1604 |
+
upcast_attention: float = False,
|
1605 |
+
attention_type: str = "default",
|
1606 |
+
temporal_num_attention_heads: int = 1,
|
1607 |
+
temporal_cross_attention_dim: Optional[int] = None,
|
1608 |
+
temporal_max_seq_length: int = 32,
|
1609 |
+
):
|
1610 |
+
super().__init__()
|
1611 |
+
|
1612 |
+
self.has_cross_attention = True
|
1613 |
+
self.num_attention_heads = num_attention_heads
|
1614 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
1615 |
+
|
1616 |
+
# there is always at least one resnet
|
1617 |
+
resnets = [
|
1618 |
+
ResnetBlock2D(
|
1619 |
+
in_channels=in_channels,
|
1620 |
+
out_channels=in_channels,
|
1621 |
+
temb_channels=temb_channels,
|
1622 |
+
eps=resnet_eps,
|
1623 |
+
groups=resnet_groups,
|
1624 |
+
dropout=dropout,
|
1625 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1626 |
+
non_linearity=resnet_act_fn,
|
1627 |
+
output_scale_factor=output_scale_factor,
|
1628 |
+
pre_norm=resnet_pre_norm,
|
1629 |
+
)
|
1630 |
+
]
|
1631 |
+
attentions = []
|
1632 |
+
motion_modules = []
|
1633 |
+
|
1634 |
+
for _ in range(num_layers):
|
1635 |
+
if not dual_cross_attention:
|
1636 |
+
attentions.append(
|
1637 |
+
Transformer2DModel(
|
1638 |
+
num_attention_heads,
|
1639 |
+
in_channels // num_attention_heads,
|
1640 |
+
in_channels=in_channels,
|
1641 |
+
num_layers=transformer_layers_per_block,
|
1642 |
+
cross_attention_dim=cross_attention_dim,
|
1643 |
+
norm_num_groups=resnet_groups,
|
1644 |
+
use_linear_projection=use_linear_projection,
|
1645 |
+
upcast_attention=upcast_attention,
|
1646 |
+
attention_type=attention_type,
|
1647 |
+
)
|
1648 |
+
)
|
1649 |
+
else:
|
1650 |
+
attentions.append(
|
1651 |
+
DualTransformer2DModel(
|
1652 |
+
num_attention_heads,
|
1653 |
+
in_channels // num_attention_heads,
|
1654 |
+
in_channels=in_channels,
|
1655 |
+
num_layers=1,
|
1656 |
+
cross_attention_dim=cross_attention_dim,
|
1657 |
+
norm_num_groups=resnet_groups,
|
1658 |
+
)
|
1659 |
+
)
|
1660 |
+
resnets.append(
|
1661 |
+
ResnetBlock2D(
|
1662 |
+
in_channels=in_channels,
|
1663 |
+
out_channels=in_channels,
|
1664 |
+
temb_channels=temb_channels,
|
1665 |
+
eps=resnet_eps,
|
1666 |
+
groups=resnet_groups,
|
1667 |
+
dropout=dropout,
|
1668 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1669 |
+
non_linearity=resnet_act_fn,
|
1670 |
+
output_scale_factor=output_scale_factor,
|
1671 |
+
pre_norm=resnet_pre_norm,
|
1672 |
+
)
|
1673 |
+
)
|
1674 |
+
motion_modules.append(
|
1675 |
+
TransformerTemporalModel(
|
1676 |
+
num_attention_heads=temporal_num_attention_heads,
|
1677 |
+
attention_head_dim=in_channels // temporal_num_attention_heads,
|
1678 |
+
in_channels=in_channels,
|
1679 |
+
norm_num_groups=resnet_groups,
|
1680 |
+
cross_attention_dim=temporal_cross_attention_dim,
|
1681 |
+
attention_bias=False,
|
1682 |
+
positional_embeddings="sinusoidal",
|
1683 |
+
num_positional_embeddings=temporal_max_seq_length,
|
1684 |
+
activation_fn="geglu",
|
1685 |
+
)
|
1686 |
+
)
|
1687 |
+
|
1688 |
+
self.attentions = nn.ModuleList(attentions)
|
1689 |
+
self.resnets = nn.ModuleList(resnets)
|
1690 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
1691 |
+
|
1692 |
+
self.gradient_checkpointing = False
|
1693 |
+
|
1694 |
+
def forward(
|
1695 |
+
self,
|
1696 |
+
hidden_states: torch.FloatTensor,
|
1697 |
+
temb: Optional[torch.FloatTensor] = None,
|
1698 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1699 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1700 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1701 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1702 |
+
num_frames: int = 1,
|
1703 |
+
) -> torch.FloatTensor:
|
1704 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1705 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
1706 |
+
|
1707 |
+
blocks = zip(self.attentions, self.resnets[1:], self.motion_modules)
|
1708 |
+
for attn, resnet, motion_module in blocks:
|
1709 |
+
if self.training and self.gradient_checkpointing:
|
1710 |
+
|
1711 |
+
def create_custom_forward(module, return_dict=None):
|
1712 |
+
def custom_forward(*inputs):
|
1713 |
+
if return_dict is not None:
|
1714 |
+
return module(*inputs, return_dict=return_dict)
|
1715 |
+
else:
|
1716 |
+
return module(*inputs)
|
1717 |
+
|
1718 |
+
return custom_forward
|
1719 |
+
|
1720 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1721 |
+
hidden_states = attn(
|
1722 |
+
hidden_states,
|
1723 |
+
encoder_hidden_states=encoder_hidden_states,
|
1724 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1725 |
+
attention_mask=attention_mask,
|
1726 |
+
encoder_attention_mask=encoder_attention_mask,
|
1727 |
+
return_dict=False,
|
1728 |
+
)[0]
|
1729 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1730 |
+
create_custom_forward(motion_module),
|
1731 |
+
hidden_states,
|
1732 |
+
temb,
|
1733 |
+
**ckpt_kwargs,
|
1734 |
+
)
|
1735 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1736 |
+
create_custom_forward(resnet),
|
1737 |
+
hidden_states,
|
1738 |
+
temb,
|
1739 |
+
**ckpt_kwargs,
|
1740 |
+
)
|
1741 |
+
else:
|
1742 |
+
hidden_states = attn(
|
1743 |
+
hidden_states,
|
1744 |
+
encoder_hidden_states=encoder_hidden_states,
|
1745 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1746 |
+
attention_mask=attention_mask,
|
1747 |
+
encoder_attention_mask=encoder_attention_mask,
|
1748 |
+
return_dict=False,
|
1749 |
+
)[0]
|
1750 |
+
hidden_states = motion_module(
|
1751 |
+
hidden_states,
|
1752 |
+
num_frames=num_frames,
|
1753 |
+
)[0]
|
1754 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
1755 |
+
|
1756 |
+
return hidden_states
|
1757 |
+
|
1758 |
+
|
1759 |
+
class MidBlockTemporalDecoder(nn.Module):
|
1760 |
+
def __init__(
|
1761 |
+
self,
|
1762 |
+
in_channels: int,
|
1763 |
+
out_channels: int,
|
1764 |
+
attention_head_dim: int = 512,
|
1765 |
+
num_layers: int = 1,
|
1766 |
+
upcast_attention: bool = False,
|
1767 |
+
):
|
1768 |
+
super().__init__()
|
1769 |
+
|
1770 |
+
resnets = []
|
1771 |
+
attentions = []
|
1772 |
+
for i in range(num_layers):
|
1773 |
+
input_channels = in_channels if i == 0 else out_channels
|
1774 |
+
resnets.append(
|
1775 |
+
SpatioTemporalResBlock(
|
1776 |
+
in_channels=input_channels,
|
1777 |
+
out_channels=out_channels,
|
1778 |
+
temb_channels=None,
|
1779 |
+
eps=1e-6,
|
1780 |
+
temporal_eps=1e-5,
|
1781 |
+
merge_factor=0.0,
|
1782 |
+
merge_strategy="learned",
|
1783 |
+
switch_spatial_to_temporal_mix=True,
|
1784 |
+
)
|
1785 |
+
)
|
1786 |
+
|
1787 |
+
attentions.append(
|
1788 |
+
Attention(
|
1789 |
+
query_dim=in_channels,
|
1790 |
+
heads=in_channels // attention_head_dim,
|
1791 |
+
dim_head=attention_head_dim,
|
1792 |
+
eps=1e-6,
|
1793 |
+
upcast_attention=upcast_attention,
|
1794 |
+
norm_num_groups=32,
|
1795 |
+
bias=True,
|
1796 |
+
residual_connection=True,
|
1797 |
+
)
|
1798 |
+
)
|
1799 |
+
|
1800 |
+
self.attentions = nn.ModuleList(attentions)
|
1801 |
+
self.resnets = nn.ModuleList(resnets)
|
1802 |
+
|
1803 |
+
def forward(
|
1804 |
+
self,
|
1805 |
+
hidden_states: torch.FloatTensor,
|
1806 |
+
image_only_indicator: torch.FloatTensor,
|
1807 |
+
):
|
1808 |
+
hidden_states = self.resnets[0](
|
1809 |
+
hidden_states,
|
1810 |
+
image_only_indicator=image_only_indicator,
|
1811 |
+
)
|
1812 |
+
for resnet, attn in zip(self.resnets[1:], self.attentions):
|
1813 |
+
hidden_states = attn(hidden_states)
|
1814 |
+
hidden_states = resnet(
|
1815 |
+
hidden_states,
|
1816 |
+
image_only_indicator=image_only_indicator,
|
1817 |
+
)
|
1818 |
+
|
1819 |
+
return hidden_states
|
1820 |
+
|
1821 |
+
|
1822 |
+
class UpBlockTemporalDecoder(nn.Module):
|
1823 |
+
def __init__(
|
1824 |
+
self,
|
1825 |
+
in_channels: int,
|
1826 |
+
out_channels: int,
|
1827 |
+
num_layers: int = 1,
|
1828 |
+
add_upsample: bool = True,
|
1829 |
+
):
|
1830 |
+
super().__init__()
|
1831 |
+
resnets = []
|
1832 |
+
for i in range(num_layers):
|
1833 |
+
input_channels = in_channels if i == 0 else out_channels
|
1834 |
+
|
1835 |
+
resnets.append(
|
1836 |
+
SpatioTemporalResBlock(
|
1837 |
+
in_channels=input_channels,
|
1838 |
+
out_channels=out_channels,
|
1839 |
+
temb_channels=None,
|
1840 |
+
eps=1e-6,
|
1841 |
+
temporal_eps=1e-5,
|
1842 |
+
merge_factor=0.0,
|
1843 |
+
merge_strategy="learned",
|
1844 |
+
switch_spatial_to_temporal_mix=True,
|
1845 |
+
)
|
1846 |
+
)
|
1847 |
+
self.resnets = nn.ModuleList(resnets)
|
1848 |
+
|
1849 |
+
if add_upsample:
|
1850 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1851 |
+
else:
|
1852 |
+
self.upsamplers = None
|
1853 |
+
|
1854 |
+
def forward(
|
1855 |
+
self,
|
1856 |
+
hidden_states: torch.FloatTensor,
|
1857 |
+
image_only_indicator: torch.FloatTensor,
|
1858 |
+
) -> torch.FloatTensor:
|
1859 |
+
for resnet in self.resnets:
|
1860 |
+
hidden_states = resnet(
|
1861 |
+
hidden_states,
|
1862 |
+
image_only_indicator=image_only_indicator,
|
1863 |
+
)
|
1864 |
+
|
1865 |
+
if self.upsamplers is not None:
|
1866 |
+
for upsampler in self.upsamplers:
|
1867 |
+
hidden_states = upsampler(hidden_states)
|
1868 |
+
|
1869 |
+
return hidden_states
|
1870 |
+
|
1871 |
+
|
1872 |
+
class UNetMidBlockSpatioTemporal(nn.Module):
|
1873 |
+
def __init__(
|
1874 |
+
self,
|
1875 |
+
in_channels: int,
|
1876 |
+
temb_channels: int,
|
1877 |
+
num_layers: int = 1,
|
1878 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
1879 |
+
num_attention_heads: int = 1,
|
1880 |
+
cross_attention_dim: int = 1280,
|
1881 |
+
):
|
1882 |
+
super().__init__()
|
1883 |
+
|
1884 |
+
self.has_cross_attention = True
|
1885 |
+
self.num_attention_heads = num_attention_heads
|
1886 |
+
|
1887 |
+
# support for variable transformer layers per block
|
1888 |
+
if isinstance(transformer_layers_per_block, int):
|
1889 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
1890 |
+
|
1891 |
+
# there is always at least one resnet
|
1892 |
+
resnets = [
|
1893 |
+
SpatioTemporalResBlock(
|
1894 |
+
in_channels=in_channels,
|
1895 |
+
out_channels=in_channels,
|
1896 |
+
temb_channels=temb_channels,
|
1897 |
+
eps=1e-5,
|
1898 |
+
)
|
1899 |
+
]
|
1900 |
+
attentions = []
|
1901 |
+
|
1902 |
+
for i in range(num_layers):
|
1903 |
+
attentions.append(
|
1904 |
+
TransformerSpatioTemporalModel(
|
1905 |
+
num_attention_heads,
|
1906 |
+
in_channels // num_attention_heads,
|
1907 |
+
in_channels=in_channels,
|
1908 |
+
num_layers=transformer_layers_per_block[i],
|
1909 |
+
cross_attention_dim=cross_attention_dim,
|
1910 |
+
)
|
1911 |
+
)
|
1912 |
+
|
1913 |
+
resnets.append(
|
1914 |
+
SpatioTemporalResBlock(
|
1915 |
+
in_channels=in_channels,
|
1916 |
+
out_channels=in_channels,
|
1917 |
+
temb_channels=temb_channels,
|
1918 |
+
eps=1e-5,
|
1919 |
+
)
|
1920 |
+
)
|
1921 |
+
|
1922 |
+
self.attentions = nn.ModuleList(attentions)
|
1923 |
+
self.resnets = nn.ModuleList(resnets)
|
1924 |
+
|
1925 |
+
self.gradient_checkpointing = False
|
1926 |
+
|
1927 |
+
def forward(
|
1928 |
+
self,
|
1929 |
+
hidden_states: torch.FloatTensor,
|
1930 |
+
temb: Optional[torch.FloatTensor] = None,
|
1931 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1932 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
1933 |
+
) -> torch.FloatTensor:
|
1934 |
+
hidden_states = self.resnets[0](
|
1935 |
+
hidden_states,
|
1936 |
+
temb,
|
1937 |
+
image_only_indicator=image_only_indicator,
|
1938 |
+
)
|
1939 |
+
|
1940 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
1941 |
+
if self.training and self.gradient_checkpointing: # TODO
|
1942 |
+
|
1943 |
+
def create_custom_forward(module, return_dict=None):
|
1944 |
+
def custom_forward(*inputs):
|
1945 |
+
if return_dict is not None:
|
1946 |
+
return module(*inputs, return_dict=return_dict)
|
1947 |
+
else:
|
1948 |
+
return module(*inputs)
|
1949 |
+
|
1950 |
+
return custom_forward
|
1951 |
+
|
1952 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1953 |
+
hidden_states = attn(
|
1954 |
+
hidden_states,
|
1955 |
+
encoder_hidden_states=encoder_hidden_states,
|
1956 |
+
image_only_indicator=image_only_indicator,
|
1957 |
+
return_dict=False,
|
1958 |
+
)[0]
|
1959 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1960 |
+
create_custom_forward(resnet),
|
1961 |
+
hidden_states,
|
1962 |
+
temb,
|
1963 |
+
image_only_indicator,
|
1964 |
+
**ckpt_kwargs,
|
1965 |
+
)
|
1966 |
+
else:
|
1967 |
+
hidden_states = attn(
|
1968 |
+
hidden_states,
|
1969 |
+
encoder_hidden_states=encoder_hidden_states,
|
1970 |
+
image_only_indicator=image_only_indicator,
|
1971 |
+
return_dict=False,
|
1972 |
+
)[0]
|
1973 |
+
hidden_states = resnet(
|
1974 |
+
hidden_states,
|
1975 |
+
temb,
|
1976 |
+
image_only_indicator=image_only_indicator,
|
1977 |
+
)
|
1978 |
+
|
1979 |
+
return hidden_states
|
1980 |
+
|
1981 |
+
|
1982 |
+
class DownBlockSpatioTemporal(nn.Module):
|
1983 |
+
def __init__(
|
1984 |
+
self,
|
1985 |
+
in_channels: int,
|
1986 |
+
out_channels: int,
|
1987 |
+
temb_channels: int,
|
1988 |
+
num_layers: int = 1,
|
1989 |
+
add_downsample: bool = True,
|
1990 |
+
):
|
1991 |
+
super().__init__()
|
1992 |
+
resnets = []
|
1993 |
+
|
1994 |
+
for i in range(num_layers):
|
1995 |
+
in_channels = in_channels if i == 0 else out_channels
|
1996 |
+
resnets.append(
|
1997 |
+
SpatioTemporalResBlock(
|
1998 |
+
in_channels=in_channels,
|
1999 |
+
out_channels=out_channels,
|
2000 |
+
temb_channels=temb_channels,
|
2001 |
+
eps=1e-5,
|
2002 |
+
)
|
2003 |
+
)
|
2004 |
+
|
2005 |
+
self.resnets = nn.ModuleList(resnets)
|
2006 |
+
|
2007 |
+
if add_downsample:
|
2008 |
+
self.downsamplers = nn.ModuleList(
|
2009 |
+
[
|
2010 |
+
Downsample2D(
|
2011 |
+
out_channels,
|
2012 |
+
use_conv=True,
|
2013 |
+
out_channels=out_channels,
|
2014 |
+
name="op",
|
2015 |
+
)
|
2016 |
+
]
|
2017 |
+
)
|
2018 |
+
else:
|
2019 |
+
self.downsamplers = None
|
2020 |
+
|
2021 |
+
self.gradient_checkpointing = False
|
2022 |
+
|
2023 |
+
def forward(
|
2024 |
+
self,
|
2025 |
+
hidden_states: torch.FloatTensor,
|
2026 |
+
temb: Optional[torch.FloatTensor] = None,
|
2027 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
2028 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
2029 |
+
output_states = ()
|
2030 |
+
for resnet in self.resnets:
|
2031 |
+
if self.training and self.gradient_checkpointing:
|
2032 |
+
|
2033 |
+
def create_custom_forward(module):
|
2034 |
+
def custom_forward(*inputs):
|
2035 |
+
return module(*inputs)
|
2036 |
+
|
2037 |
+
return custom_forward
|
2038 |
+
|
2039 |
+
if is_torch_version(">=", "1.11.0"):
|
2040 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
2041 |
+
create_custom_forward(resnet),
|
2042 |
+
hidden_states,
|
2043 |
+
temb,
|
2044 |
+
image_only_indicator,
|
2045 |
+
use_reentrant=False,
|
2046 |
+
)
|
2047 |
+
else:
|
2048 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
2049 |
+
create_custom_forward(resnet),
|
2050 |
+
hidden_states,
|
2051 |
+
temb,
|
2052 |
+
image_only_indicator,
|
2053 |
+
)
|
2054 |
+
else:
|
2055 |
+
hidden_states = resnet(
|
2056 |
+
hidden_states,
|
2057 |
+
temb,
|
2058 |
+
image_only_indicator=image_only_indicator,
|
2059 |
+
)
|
2060 |
+
|
2061 |
+
output_states = output_states + (hidden_states,)
|
2062 |
+
|
2063 |
+
if self.downsamplers is not None:
|
2064 |
+
for downsampler in self.downsamplers:
|
2065 |
+
hidden_states = downsampler(hidden_states)
|
2066 |
+
|
2067 |
+
output_states = output_states + (hidden_states,)
|
2068 |
+
|
2069 |
+
return hidden_states, output_states
|
2070 |
+
|
2071 |
+
|
2072 |
+
class CrossAttnDownBlockSpatioTemporal(nn.Module):
|
2073 |
+
def __init__(
|
2074 |
+
self,
|
2075 |
+
in_channels: int,
|
2076 |
+
out_channels: int,
|
2077 |
+
temb_channels: int,
|
2078 |
+
num_layers: int = 1,
|
2079 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
2080 |
+
num_attention_heads: int = 1,
|
2081 |
+
cross_attention_dim: int = 1280,
|
2082 |
+
add_downsample: bool = True,
|
2083 |
+
):
|
2084 |
+
super().__init__()
|
2085 |
+
resnets = []
|
2086 |
+
attentions = []
|
2087 |
+
|
2088 |
+
self.has_cross_attention = True
|
2089 |
+
self.num_attention_heads = num_attention_heads
|
2090 |
+
if isinstance(transformer_layers_per_block, int):
|
2091 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
2092 |
+
|
2093 |
+
for i in range(num_layers):
|
2094 |
+
in_channels = in_channels if i == 0 else out_channels
|
2095 |
+
resnets.append(
|
2096 |
+
SpatioTemporalResBlock(
|
2097 |
+
in_channels=in_channels,
|
2098 |
+
out_channels=out_channels,
|
2099 |
+
temb_channels=temb_channels,
|
2100 |
+
eps=1e-6,
|
2101 |
+
)
|
2102 |
+
)
|
2103 |
+
attentions.append(
|
2104 |
+
TransformerSpatioTemporalModel(
|
2105 |
+
num_attention_heads,
|
2106 |
+
out_channels // num_attention_heads,
|
2107 |
+
in_channels=out_channels,
|
2108 |
+
num_layers=transformer_layers_per_block[i],
|
2109 |
+
cross_attention_dim=cross_attention_dim,
|
2110 |
+
)
|
2111 |
+
)
|
2112 |
+
|
2113 |
+
self.attentions = nn.ModuleList(attentions)
|
2114 |
+
self.resnets = nn.ModuleList(resnets)
|
2115 |
+
|
2116 |
+
if add_downsample:
|
2117 |
+
self.downsamplers = nn.ModuleList(
|
2118 |
+
[
|
2119 |
+
Downsample2D(
|
2120 |
+
out_channels,
|
2121 |
+
use_conv=True,
|
2122 |
+
out_channels=out_channels,
|
2123 |
+
padding=1,
|
2124 |
+
name="op",
|
2125 |
+
)
|
2126 |
+
]
|
2127 |
+
)
|
2128 |
+
else:
|
2129 |
+
self.downsamplers = None
|
2130 |
+
|
2131 |
+
self.gradient_checkpointing = False
|
2132 |
+
|
2133 |
+
def forward(
|
2134 |
+
self,
|
2135 |
+
hidden_states: torch.FloatTensor,
|
2136 |
+
temb: Optional[torch.FloatTensor] = None,
|
2137 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
2138 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
2139 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
2140 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
2141 |
+
output_states = ()
|
2142 |
+
|
2143 |
+
blocks = list(zip(self.resnets, self.attentions))
|
2144 |
+
for block_idx, (resnet, attn) in enumerate(blocks):
|
2145 |
+
if self.training and self.gradient_checkpointing: # TODO
|
2146 |
+
|
2147 |
+
def create_custom_forward(module, return_dict=None):
|
2148 |
+
def custom_forward(*inputs):
|
2149 |
+
if return_dict is not None:
|
2150 |
+
return module(*inputs, return_dict=return_dict)
|
2151 |
+
else:
|
2152 |
+
return module(*inputs)
|
2153 |
+
|
2154 |
+
return custom_forward
|
2155 |
+
|
2156 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
2157 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
2158 |
+
create_custom_forward(resnet),
|
2159 |
+
hidden_states,
|
2160 |
+
temb,
|
2161 |
+
image_only_indicator,
|
2162 |
+
**ckpt_kwargs,
|
2163 |
+
)
|
2164 |
+
|
2165 |
+
hidden_states = attn(
|
2166 |
+
hidden_states,
|
2167 |
+
encoder_hidden_states=encoder_hidden_states,
|
2168 |
+
image_only_indicator=image_only_indicator,
|
2169 |
+
return_dict=False,
|
2170 |
+
)[0]
|
2171 |
+
else:
|
2172 |
+
hidden_states = resnet(
|
2173 |
+
hidden_states,
|
2174 |
+
temb,
|
2175 |
+
image_only_indicator=image_only_indicator,
|
2176 |
+
)
|
2177 |
+
hidden_states = attn(
|
2178 |
+
hidden_states,
|
2179 |
+
encoder_hidden_states=encoder_hidden_states,
|
2180 |
+
image_only_indicator=image_only_indicator,
|
2181 |
+
return_dict=False,
|
2182 |
+
)[0]
|
2183 |
+
|
2184 |
+
output_states = output_states + (hidden_states,)
|
2185 |
+
|
2186 |
+
# NOTE
|
2187 |
+
if block_idx == len(blocks) - 1 and additional_residuals is not None:
|
2188 |
+
if hidden_states.dim() == 5:
|
2189 |
+
additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=hidden_states.shape[0])
|
2190 |
+
hidden_states = hidden_states + additional_residuals
|
2191 |
+
|
2192 |
+
if self.downsamplers is not None:
|
2193 |
+
for downsampler in self.downsamplers:
|
2194 |
+
hidden_states = downsampler(hidden_states)
|
2195 |
+
|
2196 |
+
output_states = output_states + (hidden_states,)
|
2197 |
+
|
2198 |
+
return hidden_states, output_states
|
2199 |
+
|
2200 |
+
|
2201 |
+
class UpBlockSpatioTemporal(nn.Module):
|
2202 |
+
def __init__(
|
2203 |
+
self,
|
2204 |
+
in_channels: int,
|
2205 |
+
prev_output_channel: int,
|
2206 |
+
out_channels: int,
|
2207 |
+
temb_channels: int,
|
2208 |
+
resolution_idx: Optional[int] = None,
|
2209 |
+
num_layers: int = 1,
|
2210 |
+
resnet_eps: float = 1e-6,
|
2211 |
+
add_upsample: bool = True,
|
2212 |
+
):
|
2213 |
+
super().__init__()
|
2214 |
+
resnets = []
|
2215 |
+
|
2216 |
+
for i in range(num_layers):
|
2217 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
2218 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
2219 |
+
|
2220 |
+
resnets.append(
|
2221 |
+
SpatioTemporalResBlock(
|
2222 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
2223 |
+
out_channels=out_channels,
|
2224 |
+
temb_channels=temb_channels,
|
2225 |
+
eps=resnet_eps,
|
2226 |
+
)
|
2227 |
+
)
|
2228 |
+
|
2229 |
+
self.resnets = nn.ModuleList(resnets)
|
2230 |
+
|
2231 |
+
if add_upsample:
|
2232 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
2233 |
+
else:
|
2234 |
+
self.upsamplers = None
|
2235 |
+
|
2236 |
+
self.gradient_checkpointing = False
|
2237 |
+
self.resolution_idx = resolution_idx
|
2238 |
+
|
2239 |
+
def forward(
|
2240 |
+
self,
|
2241 |
+
hidden_states: torch.FloatTensor,
|
2242 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
2243 |
+
temb: Optional[torch.FloatTensor] = None,
|
2244 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
2245 |
+
) -> torch.FloatTensor:
|
2246 |
+
for resnet in self.resnets:
|
2247 |
+
# pop res hidden states
|
2248 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
2249 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
2250 |
+
|
2251 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
2252 |
+
|
2253 |
+
if self.training and self.gradient_checkpointing:
|
2254 |
+
|
2255 |
+
def create_custom_forward(module):
|
2256 |
+
def custom_forward(*inputs):
|
2257 |
+
return module(*inputs)
|
2258 |
+
|
2259 |
+
return custom_forward
|
2260 |
+
|
2261 |
+
if is_torch_version(">=", "1.11.0"):
|
2262 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
2263 |
+
create_custom_forward(resnet),
|
2264 |
+
hidden_states,
|
2265 |
+
temb,
|
2266 |
+
image_only_indicator,
|
2267 |
+
use_reentrant=False,
|
2268 |
+
)
|
2269 |
+
else:
|
2270 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
2271 |
+
create_custom_forward(resnet),
|
2272 |
+
hidden_states,
|
2273 |
+
temb,
|
2274 |
+
image_only_indicator,
|
2275 |
+
)
|
2276 |
+
else:
|
2277 |
+
hidden_states = resnet(
|
2278 |
+
hidden_states,
|
2279 |
+
temb,
|
2280 |
+
image_only_indicator=image_only_indicator,
|
2281 |
+
)
|
2282 |
+
|
2283 |
+
if self.upsamplers is not None:
|
2284 |
+
for upsampler in self.upsamplers:
|
2285 |
+
hidden_states = upsampler(hidden_states)
|
2286 |
+
|
2287 |
+
return hidden_states
|
2288 |
+
|
2289 |
+
|
2290 |
+
class CrossAttnUpBlockSpatioTemporal(nn.Module):
|
2291 |
+
def __init__(
|
2292 |
+
self,
|
2293 |
+
in_channels: int,
|
2294 |
+
out_channels: int,
|
2295 |
+
prev_output_channel: int,
|
2296 |
+
temb_channels: int,
|
2297 |
+
resolution_idx: Optional[int] = None,
|
2298 |
+
num_layers: int = 1,
|
2299 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
2300 |
+
resnet_eps: float = 1e-6,
|
2301 |
+
num_attention_heads: int = 1,
|
2302 |
+
cross_attention_dim: int = 1280,
|
2303 |
+
add_upsample: bool = True,
|
2304 |
+
):
|
2305 |
+
super().__init__()
|
2306 |
+
resnets = []
|
2307 |
+
attentions = []
|
2308 |
+
|
2309 |
+
self.has_cross_attention = True
|
2310 |
+
self.num_attention_heads = num_attention_heads
|
2311 |
+
|
2312 |
+
if isinstance(transformer_layers_per_block, int):
|
2313 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
2314 |
+
|
2315 |
+
for i in range(num_layers):
|
2316 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
2317 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
2318 |
+
|
2319 |
+
resnets.append(
|
2320 |
+
SpatioTemporalResBlock(
|
2321 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
2322 |
+
out_channels=out_channels,
|
2323 |
+
temb_channels=temb_channels,
|
2324 |
+
eps=resnet_eps,
|
2325 |
+
)
|
2326 |
+
)
|
2327 |
+
attentions.append(
|
2328 |
+
TransformerSpatioTemporalModel(
|
2329 |
+
num_attention_heads,
|
2330 |
+
out_channels // num_attention_heads,
|
2331 |
+
in_channels=out_channels,
|
2332 |
+
num_layers=transformer_layers_per_block[i],
|
2333 |
+
cross_attention_dim=cross_attention_dim,
|
2334 |
+
)
|
2335 |
+
)
|
2336 |
+
|
2337 |
+
self.attentions = nn.ModuleList(attentions)
|
2338 |
+
self.resnets = nn.ModuleList(resnets)
|
2339 |
+
|
2340 |
+
if add_upsample:
|
2341 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
2342 |
+
else:
|
2343 |
+
self.upsamplers = None
|
2344 |
+
|
2345 |
+
self.gradient_checkpointing = False
|
2346 |
+
self.resolution_idx = resolution_idx
|
2347 |
+
|
2348 |
+
def forward(
|
2349 |
+
self,
|
2350 |
+
hidden_states: torch.FloatTensor,
|
2351 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
2352 |
+
temb: Optional[torch.FloatTensor] = None,
|
2353 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
2354 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
2355 |
+
) -> torch.FloatTensor:
|
2356 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
2357 |
+
# pop res hidden states
|
2358 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
2359 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
2360 |
+
|
2361 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
2362 |
+
|
2363 |
+
if self.training and self.gradient_checkpointing: # TODO
|
2364 |
+
|
2365 |
+
def create_custom_forward(module, return_dict=None):
|
2366 |
+
def custom_forward(*inputs):
|
2367 |
+
if return_dict is not None:
|
2368 |
+
return module(*inputs, return_dict=return_dict)
|
2369 |
+
else:
|
2370 |
+
return module(*inputs)
|
2371 |
+
|
2372 |
+
return custom_forward
|
2373 |
+
|
2374 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
2375 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
2376 |
+
create_custom_forward(resnet),
|
2377 |
+
hidden_states,
|
2378 |
+
temb,
|
2379 |
+
image_only_indicator,
|
2380 |
+
**ckpt_kwargs,
|
2381 |
+
)
|
2382 |
+
hidden_states = attn(
|
2383 |
+
hidden_states,
|
2384 |
+
encoder_hidden_states=encoder_hidden_states,
|
2385 |
+
image_only_indicator=image_only_indicator,
|
2386 |
+
return_dict=False,
|
2387 |
+
)[0]
|
2388 |
+
else:
|
2389 |
+
hidden_states = resnet(
|
2390 |
+
hidden_states,
|
2391 |
+
temb,
|
2392 |
+
image_only_indicator=image_only_indicator,
|
2393 |
+
)
|
2394 |
+
hidden_states = attn(
|
2395 |
+
hidden_states,
|
2396 |
+
encoder_hidden_states=encoder_hidden_states,
|
2397 |
+
image_only_indicator=image_only_indicator,
|
2398 |
+
return_dict=False,
|
2399 |
+
)[0]
|
2400 |
+
|
2401 |
+
if self.upsamplers is not None:
|
2402 |
+
for upsampler in self.upsamplers:
|
2403 |
+
hidden_states = upsampler(hidden_states)
|
2404 |
+
|
2405 |
+
return hidden_states
|
models_diffusers/unet_spatio_temporal_condition.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, Optional, Tuple, Union
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
10 |
+
from diffusers.utils import BaseOutput, logging
|
11 |
+
# from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
|
12 |
+
from models_diffusers.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
|
13 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
14 |
+
from diffusers.models.modeling_utils import ModelMixin
|
15 |
+
# from diffusers.models.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
|
16 |
+
from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
|
17 |
+
|
18 |
+
|
19 |
+
import inspect
|
20 |
+
import itertools
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
from collections import OrderedDict
|
24 |
+
from functools import partial
|
25 |
+
from typing import Any, Callable, List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
from diffusers import __version__
|
28 |
+
from diffusers.utils import (
|
29 |
+
CONFIG_NAME,
|
30 |
+
DIFFUSERS_CACHE,
|
31 |
+
FLAX_WEIGHTS_NAME,
|
32 |
+
HF_HUB_OFFLINE,
|
33 |
+
MIN_PEFT_VERSION,
|
34 |
+
SAFETENSORS_WEIGHTS_NAME,
|
35 |
+
WEIGHTS_NAME,
|
36 |
+
_add_variant,
|
37 |
+
_get_model_file,
|
38 |
+
check_peft_version,
|
39 |
+
deprecate,
|
40 |
+
is_accelerate_available,
|
41 |
+
is_torch_version,
|
42 |
+
logging,
|
43 |
+
)
|
44 |
+
from diffusers.utils.hub_utils import PushToHubMixin
|
45 |
+
from diffusers.models.modeling_utils import load_model_dict_into_meta, load_state_dict
|
46 |
+
|
47 |
+
if is_torch_version(">=", "1.9.0"):
|
48 |
+
_LOW_CPU_MEM_USAGE_DEFAULT = True
|
49 |
+
else:
|
50 |
+
_LOW_CPU_MEM_USAGE_DEFAULT = False
|
51 |
+
|
52 |
+
if is_accelerate_available():
|
53 |
+
import accelerate
|
54 |
+
from accelerate.utils import set_module_tensor_to_device
|
55 |
+
from accelerate.utils.versions import is_torch_version
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class UNetSpatioTemporalConditionOutput(BaseOutput):
|
62 |
+
"""
|
63 |
+
The output of [`UNetSpatioTemporalConditionModel`].
|
64 |
+
|
65 |
+
Args:
|
66 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
67 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
68 |
+
"""
|
69 |
+
|
70 |
+
sample: torch.FloatTensor = None
|
71 |
+
intermediate_features: Optional[Tuple[torch.FloatTensor]] = None
|
72 |
+
|
73 |
+
|
74 |
+
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
75 |
+
r"""
|
76 |
+
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
|
77 |
+
shaped output.
|
78 |
+
|
79 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
80 |
+
for all models (such as downloading or saving).
|
81 |
+
|
82 |
+
Parameters:
|
83 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
84 |
+
Height and width of input/output sample.
|
85 |
+
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
|
86 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
87 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
|
88 |
+
The tuple of downsample blocks to use.
|
89 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
|
90 |
+
The tuple of upsample blocks to use.
|
91 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
92 |
+
The tuple of output channels for each block.
|
93 |
+
addition_time_embed_dim: (`int`, defaults to 256):
|
94 |
+
Dimension to to encode the additional time ids.
|
95 |
+
projection_class_embeddings_input_dim (`int`, defaults to 768):
|
96 |
+
The dimension of the projection of encoded `added_time_ids`.
|
97 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
98 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
99 |
+
The dimension of the cross attention features.
|
100 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
101 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
102 |
+
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
|
103 |
+
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
|
104 |
+
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
|
105 |
+
The number of attention heads.
|
106 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
107 |
+
"""
|
108 |
+
|
109 |
+
_supports_gradient_checkpointing = True
|
110 |
+
|
111 |
+
@register_to_config
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
sample_size: Optional[int] = None,
|
115 |
+
in_channels: int = 8,
|
116 |
+
out_channels: int = 4,
|
117 |
+
down_block_types: Tuple[str] = (
|
118 |
+
"CrossAttnDownBlockSpatioTemporal",
|
119 |
+
"CrossAttnDownBlockSpatioTemporal",
|
120 |
+
"CrossAttnDownBlockSpatioTemporal",
|
121 |
+
"DownBlockSpatioTemporal",
|
122 |
+
),
|
123 |
+
up_block_types: Tuple[str] = (
|
124 |
+
"UpBlockSpatioTemporal",
|
125 |
+
"CrossAttnUpBlockSpatioTemporal",
|
126 |
+
"CrossAttnUpBlockSpatioTemporal",
|
127 |
+
"CrossAttnUpBlockSpatioTemporal",
|
128 |
+
),
|
129 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
130 |
+
addition_time_embed_dim: int = 256,
|
131 |
+
projection_class_embeddings_input_dim: int = 768,
|
132 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
133 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1024,
|
134 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
135 |
+
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20),
|
136 |
+
num_frames: int = 25,
|
137 |
+
):
|
138 |
+
super().__init__()
|
139 |
+
|
140 |
+
self.sample_size = sample_size
|
141 |
+
|
142 |
+
# Check inputs
|
143 |
+
if len(down_block_types) != len(up_block_types):
|
144 |
+
raise ValueError(
|
145 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
146 |
+
)
|
147 |
+
|
148 |
+
if len(block_out_channels) != len(down_block_types):
|
149 |
+
raise ValueError(
|
150 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
151 |
+
)
|
152 |
+
|
153 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
154 |
+
raise ValueError(
|
155 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
156 |
+
)
|
157 |
+
|
158 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
159 |
+
raise ValueError(
|
160 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
161 |
+
)
|
162 |
+
|
163 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
164 |
+
raise ValueError(
|
165 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
166 |
+
)
|
167 |
+
|
168 |
+
self.mask_token = nn.Parameter(torch.randn(1, 1, 4, 1, 1))
|
169 |
+
|
170 |
+
# input
|
171 |
+
self.conv_in = nn.Conv2d(
|
172 |
+
in_channels,
|
173 |
+
block_out_channels[0],
|
174 |
+
kernel_size=3,
|
175 |
+
padding=1,
|
176 |
+
)
|
177 |
+
|
178 |
+
# time
|
179 |
+
time_embed_dim = block_out_channels[0] * 4
|
180 |
+
|
181 |
+
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
|
182 |
+
timestep_input_dim = block_out_channels[0]
|
183 |
+
|
184 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
185 |
+
|
186 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
|
187 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
188 |
+
|
189 |
+
self.down_blocks = nn.ModuleList([])
|
190 |
+
self.up_blocks = nn.ModuleList([])
|
191 |
+
|
192 |
+
if isinstance(num_attention_heads, int):
|
193 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
194 |
+
|
195 |
+
if isinstance(cross_attention_dim, int):
|
196 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
197 |
+
|
198 |
+
if isinstance(layers_per_block, int):
|
199 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
200 |
+
|
201 |
+
if isinstance(transformer_layers_per_block, int):
|
202 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
203 |
+
|
204 |
+
blocks_time_embed_dim = time_embed_dim
|
205 |
+
|
206 |
+
# down
|
207 |
+
output_channel = block_out_channels[0]
|
208 |
+
for i, down_block_type in enumerate(down_block_types):
|
209 |
+
input_channel = output_channel
|
210 |
+
output_channel = block_out_channels[i]
|
211 |
+
is_final_block = i == len(block_out_channels) - 1
|
212 |
+
|
213 |
+
down_block = get_down_block(
|
214 |
+
down_block_type,
|
215 |
+
num_layers=layers_per_block[i],
|
216 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
217 |
+
in_channels=input_channel,
|
218 |
+
out_channels=output_channel,
|
219 |
+
temb_channels=blocks_time_embed_dim,
|
220 |
+
add_downsample=not is_final_block,
|
221 |
+
resnet_eps=1e-5,
|
222 |
+
cross_attention_dim=cross_attention_dim[i],
|
223 |
+
num_attention_heads=num_attention_heads[i],
|
224 |
+
resnet_act_fn="silu",
|
225 |
+
)
|
226 |
+
self.down_blocks.append(down_block)
|
227 |
+
|
228 |
+
# mid
|
229 |
+
self.mid_block = UNetMidBlockSpatioTemporal(
|
230 |
+
block_out_channels[-1],
|
231 |
+
temb_channels=blocks_time_embed_dim,
|
232 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
233 |
+
cross_attention_dim=cross_attention_dim[-1],
|
234 |
+
num_attention_heads=num_attention_heads[-1],
|
235 |
+
)
|
236 |
+
|
237 |
+
# count how many layers upsample the images
|
238 |
+
self.num_upsamplers = 0
|
239 |
+
|
240 |
+
# up
|
241 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
242 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
243 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
244 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
245 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
246 |
+
|
247 |
+
output_channel = reversed_block_out_channels[0]
|
248 |
+
for i, up_block_type in enumerate(up_block_types):
|
249 |
+
is_final_block = i == len(block_out_channels) - 1
|
250 |
+
|
251 |
+
prev_output_channel = output_channel
|
252 |
+
output_channel = reversed_block_out_channels[i]
|
253 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
254 |
+
|
255 |
+
# add upsample block for all BUT final layer
|
256 |
+
if not is_final_block:
|
257 |
+
add_upsample = True
|
258 |
+
self.num_upsamplers += 1
|
259 |
+
else:
|
260 |
+
add_upsample = False
|
261 |
+
|
262 |
+
up_block = get_up_block(
|
263 |
+
up_block_type,
|
264 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
265 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
266 |
+
in_channels=input_channel,
|
267 |
+
out_channels=output_channel,
|
268 |
+
prev_output_channel=prev_output_channel,
|
269 |
+
temb_channels=blocks_time_embed_dim,
|
270 |
+
add_upsample=add_upsample,
|
271 |
+
resnet_eps=1e-5,
|
272 |
+
resolution_idx=i,
|
273 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
274 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
275 |
+
resnet_act_fn="silu",
|
276 |
+
)
|
277 |
+
self.up_blocks.append(up_block)
|
278 |
+
prev_output_channel = output_channel
|
279 |
+
|
280 |
+
# out
|
281 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
|
282 |
+
self.conv_act = nn.SiLU()
|
283 |
+
|
284 |
+
self.conv_out = nn.Conv2d(
|
285 |
+
block_out_channels[0],
|
286 |
+
out_channels,
|
287 |
+
kernel_size=3,
|
288 |
+
padding=1,
|
289 |
+
)
|
290 |
+
|
291 |
+
@property
|
292 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
293 |
+
r"""
|
294 |
+
Returns:
|
295 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
296 |
+
indexed by its weight name.
|
297 |
+
"""
|
298 |
+
# set recursively
|
299 |
+
processors = {}
|
300 |
+
|
301 |
+
def fn_recursive_add_processors(
|
302 |
+
name: str,
|
303 |
+
module: torch.nn.Module,
|
304 |
+
processors: Dict[str, AttentionProcessor],
|
305 |
+
):
|
306 |
+
if hasattr(module, "get_processor"):
|
307 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
308 |
+
|
309 |
+
for sub_name, child in module.named_children():
|
310 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
311 |
+
|
312 |
+
return processors
|
313 |
+
|
314 |
+
for name, module in self.named_children():
|
315 |
+
fn_recursive_add_processors(name, module, processors)
|
316 |
+
|
317 |
+
return processors
|
318 |
+
|
319 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
320 |
+
r"""
|
321 |
+
Sets the attention processor to use to compute attention.
|
322 |
+
|
323 |
+
Parameters:
|
324 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
325 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
326 |
+
for **all** `Attention` layers.
|
327 |
+
|
328 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
329 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
330 |
+
|
331 |
+
"""
|
332 |
+
count = len(self.attn_processors.keys())
|
333 |
+
|
334 |
+
if isinstance(processor, dict) and len(processor) != count:
|
335 |
+
raise ValueError(
|
336 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
337 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
338 |
+
)
|
339 |
+
|
340 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
341 |
+
if hasattr(module, "set_processor"):
|
342 |
+
if not isinstance(processor, dict):
|
343 |
+
module.set_processor(processor)
|
344 |
+
else:
|
345 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
346 |
+
|
347 |
+
for sub_name, child in module.named_children():
|
348 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
349 |
+
|
350 |
+
for name, module in self.named_children():
|
351 |
+
fn_recursive_attn_processor(name, module, processor)
|
352 |
+
|
353 |
+
def set_default_attn_processor(self):
|
354 |
+
"""
|
355 |
+
Disables custom attention processors and sets the default attention implementation.
|
356 |
+
"""
|
357 |
+
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
358 |
+
processor = AttnProcessor()
|
359 |
+
else:
|
360 |
+
raise ValueError(
|
361 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
362 |
+
)
|
363 |
+
|
364 |
+
self.set_attn_processor(processor)
|
365 |
+
|
366 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
367 |
+
if hasattr(module, "gradient_checkpointing"):
|
368 |
+
module.gradient_checkpointing = value
|
369 |
+
|
370 |
+
# Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
371 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
372 |
+
"""
|
373 |
+
Sets the attention processor to use [feed forward
|
374 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
375 |
+
|
376 |
+
Parameters:
|
377 |
+
chunk_size (`int`, *optional*):
|
378 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
379 |
+
over each tensor of dim=`dim`.
|
380 |
+
dim (`int`, *optional*, defaults to `0`):
|
381 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
382 |
+
or dim=1 (sequence length).
|
383 |
+
"""
|
384 |
+
if dim not in [0, 1]:
|
385 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
386 |
+
|
387 |
+
# By default chunk size is 1
|
388 |
+
chunk_size = chunk_size or 1
|
389 |
+
|
390 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
391 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
392 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
393 |
+
|
394 |
+
for child in module.children():
|
395 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
396 |
+
|
397 |
+
for module in self.children():
|
398 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
sample: torch.FloatTensor,
|
403 |
+
timestep: Union[torch.Tensor, float, int],
|
404 |
+
encoder_hidden_states: torch.Tensor,
|
405 |
+
added_time_ids: torch.Tensor,
|
406 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, # for t2i-adaptor or controlnet
|
407 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None, # for controlnet
|
408 |
+
return_dict: bool = True,
|
409 |
+
# return_intermediate_features: bool = False,
|
410 |
+
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
|
411 |
+
r"""
|
412 |
+
The [`UNetSpatioTemporalConditionModel`] forward method.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
sample (`torch.FloatTensor`):
|
416 |
+
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
|
417 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
418 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
419 |
+
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
|
420 |
+
added_time_ids: (`torch.FloatTensor`):
|
421 |
+
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
|
422 |
+
embeddings and added to the time embeddings.
|
423 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
424 |
+
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
|
425 |
+
tuple.
|
426 |
+
Returns:
|
427 |
+
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
|
428 |
+
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
|
429 |
+
a `tuple` is returned where the first element is the sample tensor.
|
430 |
+
"""
|
431 |
+
# 1. time
|
432 |
+
timesteps = timestep
|
433 |
+
if not torch.is_tensor(timesteps):
|
434 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
435 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
436 |
+
is_mps = sample.device.type == "mps"
|
437 |
+
if isinstance(timestep, float):
|
438 |
+
dtype = torch.float32 if is_mps else torch.float64
|
439 |
+
else:
|
440 |
+
dtype = torch.int32 if is_mps else torch.int64
|
441 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
442 |
+
elif len(timesteps.shape) == 0:
|
443 |
+
timesteps = timesteps[None].to(sample.device)
|
444 |
+
|
445 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
446 |
+
batch_size, num_frames = sample.shape[:2]
|
447 |
+
timesteps = timesteps.expand(batch_size)
|
448 |
+
|
449 |
+
t_emb = self.time_proj(timesteps)
|
450 |
+
|
451 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
452 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
453 |
+
# there might be better ways to encapsulate this.
|
454 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
455 |
+
|
456 |
+
emb = self.time_embedding(t_emb)
|
457 |
+
|
458 |
+
time_embeds = self.add_time_proj(added_time_ids.flatten())
|
459 |
+
time_embeds = time_embeds.reshape((batch_size, -1))
|
460 |
+
time_embeds = time_embeds.to(emb.dtype)
|
461 |
+
aug_emb = self.add_embedding(time_embeds)
|
462 |
+
emb = emb + aug_emb
|
463 |
+
|
464 |
+
# Flatten the batch and frames dimensions
|
465 |
+
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
|
466 |
+
sample = sample.flatten(0, 1)
|
467 |
+
# Repeat the embeddings num_video_frames times
|
468 |
+
# emb: [batch, channels] -> [batch * frames, channels]
|
469 |
+
emb = emb.repeat_interleave(num_frames, dim=0)
|
470 |
+
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
|
471 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
|
472 |
+
|
473 |
+
# 2. pre-process
|
474 |
+
sample = self.conv_in(sample)
|
475 |
+
|
476 |
+
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
|
477 |
+
|
478 |
+
is_adapter = is_controlnet = False
|
479 |
+
if (down_block_additional_residuals is not None):
|
480 |
+
if (mid_block_additional_residual is not None):
|
481 |
+
is_controlnet = True
|
482 |
+
else:
|
483 |
+
is_adapter = True
|
484 |
+
|
485 |
+
down_block_res_samples = (sample,)
|
486 |
+
for block_idx, downsample_block in enumerate(self.down_blocks):
|
487 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
488 |
+
# print('has_cross_attention', type(downsample_block))
|
489 |
+
# models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal
|
490 |
+
|
491 |
+
additional_residuals = {}
|
492 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
493 |
+
additional_residuals['additional_residuals'] = down_block_additional_residuals.pop(0)
|
494 |
+
|
495 |
+
sample, res_samples = downsample_block(
|
496 |
+
hidden_states=sample,
|
497 |
+
temb=emb,
|
498 |
+
encoder_hidden_states=encoder_hidden_states,
|
499 |
+
image_only_indicator=image_only_indicator,
|
500 |
+
**additional_residuals,
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
# print('no_cross_attention', type(downsample_block))
|
504 |
+
# models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal
|
505 |
+
|
506 |
+
sample, res_samples = downsample_block(
|
507 |
+
hidden_states=sample,
|
508 |
+
temb=emb,
|
509 |
+
image_only_indicator=image_only_indicator,
|
510 |
+
)
|
511 |
+
|
512 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
513 |
+
additional_residuals = down_block_additional_residuals.pop(0)
|
514 |
+
if sample.dim() == 5:
|
515 |
+
additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=sample.shape[0])
|
516 |
+
sample = sample + additional_residuals
|
517 |
+
|
518 |
+
down_block_res_samples += res_samples
|
519 |
+
|
520 |
+
if is_controlnet:
|
521 |
+
new_down_block_res_samples = ()
|
522 |
+
|
523 |
+
for down_block_res_sample, down_block_additional_residual in zip(down_block_res_samples, down_block_additional_residuals):
|
524 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
525 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
526 |
+
|
527 |
+
down_block_res_samples = new_down_block_res_samples
|
528 |
+
|
529 |
+
# 4. mid
|
530 |
+
sample = self.mid_block(
|
531 |
+
hidden_states=sample,
|
532 |
+
temb=emb,
|
533 |
+
encoder_hidden_states=encoder_hidden_states,
|
534 |
+
image_only_indicator=image_only_indicator,
|
535 |
+
)
|
536 |
+
|
537 |
+
if is_controlnet:
|
538 |
+
sample = sample + mid_block_additional_residual
|
539 |
+
|
540 |
+
# if return_intermediate_features:
|
541 |
+
intermediate_features = []
|
542 |
+
|
543 |
+
# 5. up
|
544 |
+
for block_idx, upsample_block in enumerate(self.up_blocks):
|
545 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
546 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
547 |
+
|
548 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
549 |
+
sample = upsample_block(
|
550 |
+
hidden_states=sample,
|
551 |
+
temb=emb,
|
552 |
+
res_hidden_states_tuple=res_samples,
|
553 |
+
encoder_hidden_states=encoder_hidden_states,
|
554 |
+
image_only_indicator=image_only_indicator,
|
555 |
+
)
|
556 |
+
else:
|
557 |
+
sample = upsample_block(
|
558 |
+
hidden_states=sample,
|
559 |
+
temb=emb,
|
560 |
+
res_hidden_states_tuple=res_samples,
|
561 |
+
image_only_indicator=image_only_indicator,
|
562 |
+
)
|
563 |
+
|
564 |
+
# if return_intermediate_features:
|
565 |
+
intermediate_features.append(sample)
|
566 |
+
|
567 |
+
# 6. post-process
|
568 |
+
sample = self.conv_norm_out(sample)
|
569 |
+
sample = self.conv_act(sample)
|
570 |
+
sample = self.conv_out(sample)
|
571 |
+
|
572 |
+
# 7. Reshape back to original shape
|
573 |
+
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
|
574 |
+
|
575 |
+
if not return_dict:
|
576 |
+
return (sample, intermediate_features)
|
577 |
+
|
578 |
+
return UNetSpatioTemporalConditionOutput(
|
579 |
+
sample=sample,
|
580 |
+
intermediate_features=intermediate_features,
|
581 |
+
)
|
582 |
+
|
583 |
+
@classmethod
|
584 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], custom_resume=False, **kwargs):
|
585 |
+
r"""
|
586 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
587 |
+
|
588 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
589 |
+
train the model, set it back in training mode with `model.train()`.
|
590 |
+
|
591 |
+
Parameters:
|
592 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
593 |
+
Can be either:
|
594 |
+
|
595 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
596 |
+
the Hub.
|
597 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
598 |
+
with [`~ModelMixin.save_pretrained`].
|
599 |
+
|
600 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
601 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
602 |
+
is not used.
|
603 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
604 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
605 |
+
dtype is automatically derived from the model's weights.
|
606 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
607 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
608 |
+
cached versions if they exist.
|
609 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
610 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
611 |
+
incompletely downloaded files are deleted.
|
612 |
+
proxies (`Dict[str, str]`, *optional*):
|
613 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
614 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
615 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
616 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
617 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
618 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
619 |
+
won't be downloaded from the Hub.
|
620 |
+
use_auth_token (`str` or *bool*, *optional*):
|
621 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
622 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
623 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
624 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
625 |
+
allowed by Git.
|
626 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
627 |
+
Load the model weights from a Flax checkpoint save file.
|
628 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
629 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
630 |
+
mirror (`str`, *optional*):
|
631 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
632 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
633 |
+
information.
|
634 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
635 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
636 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
637 |
+
same device.
|
638 |
+
|
639 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
640 |
+
more information about each option see [designing a device
|
641 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
642 |
+
max_memory (`Dict`, *optional*):
|
643 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
644 |
+
each GPU and the available CPU RAM if unset.
|
645 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
646 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
647 |
+
offload_state_dict (`bool`, *optional*):
|
648 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
649 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
650 |
+
when there is some disk offload.
|
651 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
652 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
653 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
654 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
655 |
+
argument to `True` will raise an error.
|
656 |
+
variant (`str`, *optional*):
|
657 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
658 |
+
loading `from_flax`.
|
659 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
660 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
661 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
662 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
663 |
+
|
664 |
+
<Tip>
|
665 |
+
|
666 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
667 |
+
`huggingface-cli login`. You can also activate the special
|
668 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
669 |
+
firewalled environment.
|
670 |
+
|
671 |
+
</Tip>
|
672 |
+
|
673 |
+
Example:
|
674 |
+
|
675 |
+
```py
|
676 |
+
from diffusers import UNet2DConditionModel
|
677 |
+
|
678 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
679 |
+
```
|
680 |
+
|
681 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
682 |
+
|
683 |
+
```bash
|
684 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
685 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
686 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
687 |
+
```
|
688 |
+
"""
|
689 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
690 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
691 |
+
force_download = kwargs.pop("force_download", False)
|
692 |
+
from_flax = kwargs.pop("from_flax", False)
|
693 |
+
resume_download = kwargs.pop("resume_download", False)
|
694 |
+
proxies = kwargs.pop("proxies", None)
|
695 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
696 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
697 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
698 |
+
revision = kwargs.pop("revision", None)
|
699 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
700 |
+
subfolder = kwargs.pop("subfolder", None)
|
701 |
+
device_map = kwargs.pop("device_map", None)
|
702 |
+
max_memory = kwargs.pop("max_memory", None)
|
703 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
704 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
705 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
706 |
+
variant = kwargs.pop("variant", None)
|
707 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
708 |
+
|
709 |
+
allow_pickle = False
|
710 |
+
if use_safetensors is None:
|
711 |
+
use_safetensors = True
|
712 |
+
allow_pickle = True
|
713 |
+
|
714 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
715 |
+
low_cpu_mem_usage = False
|
716 |
+
logger.warning(
|
717 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
718 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
719 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
720 |
+
" install accelerate\n```\n."
|
721 |
+
)
|
722 |
+
|
723 |
+
if device_map is not None and not is_accelerate_available():
|
724 |
+
raise NotImplementedError(
|
725 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
726 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
727 |
+
)
|
728 |
+
|
729 |
+
# Check if we can handle device_map and dispatching the weights
|
730 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
731 |
+
raise NotImplementedError(
|
732 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
733 |
+
" `device_map=None`."
|
734 |
+
)
|
735 |
+
|
736 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
737 |
+
raise NotImplementedError(
|
738 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
739 |
+
" `low_cpu_mem_usage=False`."
|
740 |
+
)
|
741 |
+
|
742 |
+
if low_cpu_mem_usage is False and device_map is not None:
|
743 |
+
raise ValueError(
|
744 |
+
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
|
745 |
+
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
|
746 |
+
)
|
747 |
+
|
748 |
+
# Load config if we don't provide a configuration
|
749 |
+
config_path = pretrained_model_name_or_path
|
750 |
+
|
751 |
+
user_agent = {
|
752 |
+
"diffusers": __version__,
|
753 |
+
"file_type": "model",
|
754 |
+
"framework": "pytorch",
|
755 |
+
}
|
756 |
+
|
757 |
+
# load config
|
758 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
759 |
+
config_path,
|
760 |
+
cache_dir=cache_dir,
|
761 |
+
return_unused_kwargs=True,
|
762 |
+
return_commit_hash=True,
|
763 |
+
force_download=force_download,
|
764 |
+
resume_download=resume_download,
|
765 |
+
proxies=proxies,
|
766 |
+
local_files_only=local_files_only,
|
767 |
+
use_auth_token=use_auth_token,
|
768 |
+
revision=revision,
|
769 |
+
subfolder=subfolder,
|
770 |
+
device_map=device_map,
|
771 |
+
max_memory=max_memory,
|
772 |
+
offload_folder=offload_folder,
|
773 |
+
offload_state_dict=offload_state_dict,
|
774 |
+
user_agent=user_agent,
|
775 |
+
**kwargs,
|
776 |
+
)
|
777 |
+
|
778 |
+
if not custom_resume:
|
779 |
+
# NOTE: update in_channels, for additional mask concatentation
|
780 |
+
config['in_channels'] = config['in_channels'] + 1
|
781 |
+
|
782 |
+
# load model
|
783 |
+
model_file = None
|
784 |
+
if from_flax:
|
785 |
+
model_file = _get_model_file(
|
786 |
+
pretrained_model_name_or_path,
|
787 |
+
weights_name=FLAX_WEIGHTS_NAME,
|
788 |
+
cache_dir=cache_dir,
|
789 |
+
force_download=force_download,
|
790 |
+
resume_download=resume_download,
|
791 |
+
proxies=proxies,
|
792 |
+
local_files_only=local_files_only,
|
793 |
+
use_auth_token=use_auth_token,
|
794 |
+
revision=revision,
|
795 |
+
subfolder=subfolder,
|
796 |
+
user_agent=user_agent,
|
797 |
+
commit_hash=commit_hash,
|
798 |
+
)
|
799 |
+
model = cls.from_config(config, **unused_kwargs)
|
800 |
+
|
801 |
+
# Convert the weights
|
802 |
+
from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
|
803 |
+
|
804 |
+
model = load_flax_checkpoint_in_pytorch_model(model, model_file)
|
805 |
+
else:
|
806 |
+
if use_safetensors:
|
807 |
+
try:
|
808 |
+
model_file = _get_model_file(
|
809 |
+
pretrained_model_name_or_path,
|
810 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
811 |
+
cache_dir=cache_dir,
|
812 |
+
force_download=force_download,
|
813 |
+
resume_download=resume_download,
|
814 |
+
proxies=proxies,
|
815 |
+
local_files_only=local_files_only,
|
816 |
+
use_auth_token=use_auth_token,
|
817 |
+
revision=revision,
|
818 |
+
subfolder=subfolder,
|
819 |
+
user_agent=user_agent,
|
820 |
+
commit_hash=commit_hash,
|
821 |
+
)
|
822 |
+
except IOError as e:
|
823 |
+
if not allow_pickle:
|
824 |
+
raise e
|
825 |
+
pass
|
826 |
+
if model_file is None:
|
827 |
+
model_file = _get_model_file(
|
828 |
+
pretrained_model_name_or_path,
|
829 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
830 |
+
cache_dir=cache_dir,
|
831 |
+
force_download=force_download,
|
832 |
+
resume_download=resume_download,
|
833 |
+
proxies=proxies,
|
834 |
+
local_files_only=local_files_only,
|
835 |
+
use_auth_token=use_auth_token,
|
836 |
+
revision=revision,
|
837 |
+
subfolder=subfolder,
|
838 |
+
user_agent=user_agent,
|
839 |
+
commit_hash=commit_hash,
|
840 |
+
)
|
841 |
+
|
842 |
+
if low_cpu_mem_usage:
|
843 |
+
# Instantiate model with empty weights
|
844 |
+
with accelerate.init_empty_weights():
|
845 |
+
model = cls.from_config(config, **unused_kwargs)
|
846 |
+
|
847 |
+
# if device_map is None, load the state dict and move the params from meta device to the cpu
|
848 |
+
if device_map is None:
|
849 |
+
param_device = "cpu"
|
850 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
851 |
+
|
852 |
+
if not custom_resume:
|
853 |
+
# NOTE update conv_in_weight
|
854 |
+
conv_in_weight = state_dict['conv_in.weight']
|
855 |
+
assert conv_in_weight.shape == (320, 8, 3, 3)
|
856 |
+
conv_in_weight_new = torch.randn(320, 9, 3, 3).to(conv_in_weight.device).to(conv_in_weight.dtype)
|
857 |
+
conv_in_weight_new[:, :8, :, :] = conv_in_weight
|
858 |
+
state_dict['conv_in.weight'] = conv_in_weight_new
|
859 |
+
|
860 |
+
# NOTE add mask_token
|
861 |
+
mask_token = torch.randn(1, 1, 4, 1, 1).to(conv_in_weight.device).to(conv_in_weight.dtype)
|
862 |
+
state_dict["mask_token"] = mask_token
|
863 |
+
|
864 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
865 |
+
# move the params from meta device to cpu
|
866 |
+
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
|
867 |
+
if len(missing_keys) > 0:
|
868 |
+
raise ValueError(
|
869 |
+
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
|
870 |
+
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
|
871 |
+
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
|
872 |
+
" those weights or else make sure your checkpoint file is correct."
|
873 |
+
)
|
874 |
+
|
875 |
+
unexpected_keys = load_model_dict_into_meta(
|
876 |
+
model,
|
877 |
+
state_dict,
|
878 |
+
device=param_device,
|
879 |
+
dtype=torch_dtype,
|
880 |
+
model_name_or_path=pretrained_model_name_or_path,
|
881 |
+
)
|
882 |
+
|
883 |
+
if cls._keys_to_ignore_on_load_unexpected is not None:
|
884 |
+
for pat in cls._keys_to_ignore_on_load_unexpected:
|
885 |
+
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
886 |
+
|
887 |
+
if len(unexpected_keys) > 0:
|
888 |
+
logger.warn(
|
889 |
+
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
|
890 |
+
)
|
891 |
+
|
892 |
+
else: # else let accelerate handle loading and dispatching.
|
893 |
+
# Load weights and dispatch according to the device_map
|
894 |
+
# by default the device_map is None and the weights are loaded on the CPU
|
895 |
+
try:
|
896 |
+
accelerate.load_checkpoint_and_dispatch(
|
897 |
+
model,
|
898 |
+
model_file,
|
899 |
+
device_map,
|
900 |
+
max_memory=max_memory,
|
901 |
+
offload_folder=offload_folder,
|
902 |
+
offload_state_dict=offload_state_dict,
|
903 |
+
dtype=torch_dtype,
|
904 |
+
)
|
905 |
+
except AttributeError as e:
|
906 |
+
# When using accelerate loading, we do not have the ability to load the state
|
907 |
+
# dict and rename the weight names manually. Additionally, accelerate skips
|
908 |
+
# torch loading conventions and directly writes into `module.{_buffers, _parameters}`
|
909 |
+
# (which look like they should be private variables?), so we can't use the standard hooks
|
910 |
+
# to rename parameters on load. We need to mimic the original weight names so the correct
|
911 |
+
# attributes are available. After we have loaded the weights, we convert the deprecated
|
912 |
+
# names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
|
913 |
+
# the weights so we don't have to do this again.
|
914 |
+
|
915 |
+
if "'Attention' object has no attribute" in str(e):
|
916 |
+
logger.warn(
|
917 |
+
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
|
918 |
+
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
|
919 |
+
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
|
920 |
+
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
|
921 |
+
" please also re-upload it or open a PR on the original repository."
|
922 |
+
)
|
923 |
+
model._temp_convert_self_to_deprecated_attention_blocks()
|
924 |
+
accelerate.load_checkpoint_and_dispatch(
|
925 |
+
model,
|
926 |
+
model_file,
|
927 |
+
device_map,
|
928 |
+
max_memory=max_memory,
|
929 |
+
offload_folder=offload_folder,
|
930 |
+
offload_state_dict=offload_state_dict,
|
931 |
+
dtype=torch_dtype,
|
932 |
+
)
|
933 |
+
model._undo_temp_convert_self_to_deprecated_attention_blocks()
|
934 |
+
else:
|
935 |
+
raise e
|
936 |
+
|
937 |
+
loading_info = {
|
938 |
+
"missing_keys": [],
|
939 |
+
"unexpected_keys": [],
|
940 |
+
"mismatched_keys": [],
|
941 |
+
"error_msgs": [],
|
942 |
+
}
|
943 |
+
else:
|
944 |
+
model = cls.from_config(config, **unused_kwargs)
|
945 |
+
|
946 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
947 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
948 |
+
|
949 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
|
950 |
+
model,
|
951 |
+
state_dict,
|
952 |
+
model_file,
|
953 |
+
pretrained_model_name_or_path,
|
954 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
955 |
+
)
|
956 |
+
|
957 |
+
loading_info = {
|
958 |
+
"missing_keys": missing_keys,
|
959 |
+
"unexpected_keys": unexpected_keys,
|
960 |
+
"mismatched_keys": mismatched_keys,
|
961 |
+
"error_msgs": error_msgs,
|
962 |
+
}
|
963 |
+
|
964 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
965 |
+
raise ValueError(
|
966 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
967 |
+
)
|
968 |
+
elif torch_dtype is not None:
|
969 |
+
model = model.to(torch_dtype)
|
970 |
+
|
971 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
972 |
+
|
973 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
974 |
+
model.eval()
|
975 |
+
if output_loading_info:
|
976 |
+
return model, loading_info
|
977 |
+
|
978 |
+
return model
|
models_diffusers/utils.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
def gen_gaussian_heatmap(imgSize=200):
|
16 |
+
circle_img = np.zeros((imgSize, imgSize), np.float32)
|
17 |
+
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
|
18 |
+
|
19 |
+
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
|
20 |
+
|
21 |
+
# Guass Map
|
22 |
+
for i in range(imgSize):
|
23 |
+
for j in range(imgSize):
|
24 |
+
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
|
25 |
+
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
|
26 |
+
|
27 |
+
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
|
28 |
+
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
|
29 |
+
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
|
30 |
+
|
31 |
+
# isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
|
32 |
+
return isotropicGrayscaleImage
|
33 |
+
|
34 |
+
|
35 |
+
def draw_heatmap(img, center_coordinate, heatmap_template, side, width, height):
|
36 |
+
x1 = max(center_coordinate[0] - side, 1)
|
37 |
+
x2 = min(center_coordinate[0] + side, width - 1)
|
38 |
+
y1 = max(center_coordinate[1] - side, 1)
|
39 |
+
y2 = min(center_coordinate[1] + side, height - 1)
|
40 |
+
x1, x2, y1, y2 = int(x1), int(x2), int(y1), int(y2)
|
41 |
+
|
42 |
+
if (x2 - x1) < 1 or (y2 - y1) < 1:
|
43 |
+
print(center_coordinate, "x1, x2, y1, y2", x1, x2, y1, y2)
|
44 |
+
return img
|
45 |
+
|
46 |
+
need_map = cv2.resize(heatmap_template, (x2-x1, y2-y1))
|
47 |
+
|
48 |
+
img[y1:y2,x1:x2] = need_map
|
49 |
+
|
50 |
+
return img
|
51 |
+
|
52 |
+
|
53 |
+
def generate_gassian_heatmap(pred_tracks, pred_visibility=None, image_size=None, side=20):
|
54 |
+
width, height = image_size
|
55 |
+
num_frames, num_points = pred_tracks.shape[:2]
|
56 |
+
|
57 |
+
point_index_list = [point_idx for point_idx in range(num_points)]
|
58 |
+
heatmap_template = gen_gaussian_heatmap()
|
59 |
+
|
60 |
+
|
61 |
+
image_list = []
|
62 |
+
for frame_idx in range(num_frames):
|
63 |
+
|
64 |
+
img = np.zeros((height, width), np.float32)
|
65 |
+
for point_idx in point_index_list:
|
66 |
+
px, py = pred_tracks[frame_idx, point_idx]
|
67 |
+
|
68 |
+
if px < 0 or py < 0 or px >= width or py >= height:
|
69 |
+
if (frame_idx == 0) or (frame_idx == num_frames - 1):
|
70 |
+
print(frame_idx, point_idx, px, py)
|
71 |
+
continue
|
72 |
+
|
73 |
+
if pred_visibility is not None:
|
74 |
+
if (not pred_visibility[frame_idx, point_idx]):
|
75 |
+
continue
|
76 |
+
|
77 |
+
img = draw_heatmap(img, (px, py), heatmap_template, side, width, height)
|
78 |
+
|
79 |
+
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_GRAY2RGB)
|
80 |
+
img = torch.from_numpy(img).permute(2, 0, 1).contiguous()
|
81 |
+
image_list.append(img)
|
82 |
+
|
83 |
+
video_gaussion_map = torch.stack(image_list, dim=0)
|
84 |
+
|
85 |
+
return video_gaussion_map
|
pipelines/pipeline_stable_video_diffusion_interp_control.py
ADDED
@@ -0,0 +1,854 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
24 |
+
|
25 |
+
from diffusers.image_processor import VaeImageProcessor
|
26 |
+
# from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
27 |
+
from diffusers.models import AutoencoderKLTemporalDecoder
|
28 |
+
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
29 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
30 |
+
from diffusers.utils import BaseOutput, logging
|
31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
33 |
+
|
34 |
+
from models_diffusers.controlnet_svd import ControlNetSVDModel
|
35 |
+
# from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap
|
36 |
+
from models_diffusers.utils import generate_gassian_heatmap
|
37 |
+
|
38 |
+
from einops import rearrange
|
39 |
+
from models_diffusers.sift_match import point_tracking, interpolate_trajectory
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43 |
+
|
44 |
+
|
45 |
+
def _append_dims(x, target_dims):
|
46 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
47 |
+
dims_to_append = target_dims - x.ndim
|
48 |
+
if dims_to_append < 0:
|
49 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
50 |
+
return x[(...,) + (None,) * dims_to_append]
|
51 |
+
|
52 |
+
|
53 |
+
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
54 |
+
# Based on:
|
55 |
+
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
56 |
+
|
57 |
+
batch_size, channels, num_frames, height, width = video.shape
|
58 |
+
outputs = []
|
59 |
+
for batch_idx in range(batch_size):
|
60 |
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
61 |
+
batch_output = processor.postprocess(batch_vid, output_type)
|
62 |
+
|
63 |
+
outputs.append(batch_output)
|
64 |
+
|
65 |
+
return outputs
|
66 |
+
|
67 |
+
|
68 |
+
@dataclass
|
69 |
+
class StableVideoDiffusionInterpControlPipelineOutput(BaseOutput):
|
70 |
+
r"""
|
71 |
+
Output class for zero-shot text-to-video pipeline.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
|
75 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
76 |
+
num_channels)`.
|
77 |
+
"""
|
78 |
+
|
79 |
+
frames: Union[List[PIL.Image.Image], np.ndarray]
|
80 |
+
|
81 |
+
|
82 |
+
class StableVideoDiffusionInterpControlPipeline(DiffusionPipeline):
|
83 |
+
r"""
|
84 |
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
85 |
+
|
86 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
87 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
88 |
+
|
89 |
+
Args:
|
90 |
+
vae ([`AutoencoderKL`]):
|
91 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
92 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
93 |
+
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
94 |
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
95 |
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
96 |
+
scheduler ([`EulerDiscreteScheduler`]):
|
97 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
98 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
99 |
+
A `CLIPImageProcessor` to extract features from generated images.
|
100 |
+
"""
|
101 |
+
|
102 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
103 |
+
_callback_tensor_inputs = ["latents"]
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
vae: AutoencoderKLTemporalDecoder,
|
108 |
+
image_encoder: CLIPVisionModelWithProjection,
|
109 |
+
unet: UNetSpatioTemporalConditionModel,
|
110 |
+
scheduler: EulerDiscreteScheduler,
|
111 |
+
feature_extractor: CLIPImageProcessor,
|
112 |
+
controlnet: Optional[ControlNetSVDModel] = None,
|
113 |
+
pose_encoder: Optional[torch.nn.Module] = None,
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
self.register_modules(
|
118 |
+
vae=vae,
|
119 |
+
image_encoder=image_encoder,
|
120 |
+
unet=unet,
|
121 |
+
scheduler=scheduler,
|
122 |
+
feature_extractor=feature_extractor,
|
123 |
+
controlnet=controlnet,
|
124 |
+
pose_encoder=pose_encoder,
|
125 |
+
)
|
126 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
127 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
128 |
+
|
129 |
+
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance):
|
130 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
131 |
+
|
132 |
+
if not isinstance(image, torch.Tensor):
|
133 |
+
image = self.image_processor.pil_to_numpy(image)
|
134 |
+
image = self.image_processor.numpy_to_pt(image)
|
135 |
+
|
136 |
+
# We normalize the image before resizing to match with the original implementation.
|
137 |
+
# Then we unnormalize it after resizing.
|
138 |
+
image = image * 2.0 - 1.0
|
139 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
140 |
+
image = (image + 1.0) / 2.0
|
141 |
+
|
142 |
+
# Normalize the image with for CLIP input
|
143 |
+
image = self.feature_extractor(
|
144 |
+
images=image,
|
145 |
+
do_normalize=True,
|
146 |
+
do_center_crop=False,
|
147 |
+
do_resize=False,
|
148 |
+
do_rescale=False,
|
149 |
+
return_tensors="pt",
|
150 |
+
).pixel_values
|
151 |
+
|
152 |
+
image = image.to(device=device, dtype=dtype)
|
153 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
154 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
155 |
+
|
156 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
157 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
158 |
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
159 |
+
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
160 |
+
|
161 |
+
if do_classifier_free_guidance:
|
162 |
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
163 |
+
|
164 |
+
# For classifier free guidance, we need to do two forward passes.
|
165 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
166 |
+
# to avoid doing two forward passes
|
167 |
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
168 |
+
|
169 |
+
return image_embeddings
|
170 |
+
|
171 |
+
def _encode_vae_image(
|
172 |
+
self,
|
173 |
+
image: torch.Tensor,
|
174 |
+
device,
|
175 |
+
num_videos_per_prompt,
|
176 |
+
do_classifier_free_guidance,
|
177 |
+
):
|
178 |
+
image = image.to(device=device)
|
179 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
180 |
+
|
181 |
+
if do_classifier_free_guidance:
|
182 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
183 |
+
|
184 |
+
# For classifier free guidance, we need to do two forward passes.
|
185 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
186 |
+
# to avoid doing two forward passes
|
187 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
188 |
+
|
189 |
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
190 |
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
191 |
+
|
192 |
+
return image_latents
|
193 |
+
|
194 |
+
def _get_add_time_ids(
|
195 |
+
self,
|
196 |
+
fps,
|
197 |
+
motion_bucket_id,
|
198 |
+
noise_aug_strength,
|
199 |
+
dtype,
|
200 |
+
batch_size,
|
201 |
+
num_videos_per_prompt,
|
202 |
+
do_classifier_free_guidance,
|
203 |
+
):
|
204 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
205 |
+
|
206 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
207 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
208 |
+
|
209 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
210 |
+
raise ValueError(
|
211 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
212 |
+
)
|
213 |
+
|
214 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
215 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
216 |
+
|
217 |
+
if do_classifier_free_guidance:
|
218 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
219 |
+
|
220 |
+
return add_time_ids
|
221 |
+
|
222 |
+
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
|
223 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
224 |
+
latents = latents.flatten(0, 1)
|
225 |
+
|
226 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
227 |
+
|
228 |
+
accepts_num_frames = "num_frames" in set(inspect.signature(self.vae.forward).parameters.keys())
|
229 |
+
|
230 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
231 |
+
frames = []
|
232 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
233 |
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
234 |
+
decode_kwargs = {}
|
235 |
+
if accepts_num_frames:
|
236 |
+
# we only pass num_frames_in if it's expected
|
237 |
+
decode_kwargs["num_frames"] = num_frames_in
|
238 |
+
|
239 |
+
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
240 |
+
frames.append(frame)
|
241 |
+
frames = torch.cat(frames, dim=0)
|
242 |
+
|
243 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
244 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
245 |
+
|
246 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
247 |
+
frames = frames.float()
|
248 |
+
return frames
|
249 |
+
|
250 |
+
def check_inputs(self, image, height, width):
|
251 |
+
if (
|
252 |
+
not isinstance(image, torch.Tensor)
|
253 |
+
and not isinstance(image, PIL.Image.Image)
|
254 |
+
and not isinstance(image, list)
|
255 |
+
):
|
256 |
+
raise ValueError(
|
257 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
258 |
+
f" {type(image)}"
|
259 |
+
)
|
260 |
+
|
261 |
+
if height % 8 != 0 or width % 8 != 0:
|
262 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
263 |
+
|
264 |
+
def prepare_latents(
|
265 |
+
self,
|
266 |
+
batch_size,
|
267 |
+
num_frames,
|
268 |
+
num_channels_latents,
|
269 |
+
height,
|
270 |
+
width,
|
271 |
+
dtype,
|
272 |
+
device,
|
273 |
+
generator,
|
274 |
+
latents=None,
|
275 |
+
):
|
276 |
+
shape = (
|
277 |
+
batch_size,
|
278 |
+
num_frames,
|
279 |
+
num_channels_latents // 2,
|
280 |
+
height // self.vae_scale_factor,
|
281 |
+
width // self.vae_scale_factor,
|
282 |
+
)
|
283 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
284 |
+
raise ValueError(
|
285 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
286 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
287 |
+
)
|
288 |
+
|
289 |
+
if latents is None:
|
290 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
291 |
+
else:
|
292 |
+
latents = latents.to(device)
|
293 |
+
|
294 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
295 |
+
latents = latents * self.scheduler.init_noise_sigma
|
296 |
+
return latents
|
297 |
+
|
298 |
+
@property
|
299 |
+
def guidance_scale(self):
|
300 |
+
return self._guidance_scale
|
301 |
+
|
302 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
303 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
304 |
+
# corresponds to doing no classifier free guidance.
|
305 |
+
@property
|
306 |
+
def do_classifier_free_guidance(self):
|
307 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
308 |
+
|
309 |
+
@property
|
310 |
+
def num_timesteps(self):
|
311 |
+
return self._num_timesteps
|
312 |
+
|
313 |
+
@torch.no_grad()
|
314 |
+
def __call__(
|
315 |
+
self,
|
316 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
317 |
+
image_end: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
318 |
+
# for points
|
319 |
+
with_control: bool = True,
|
320 |
+
point_tracks: Optional[torch.FloatTensor] = None,
|
321 |
+
point_embedding: Optional[torch.FloatTensor] = None,
|
322 |
+
with_id_feature: bool = False, # NOTE: whether to use the id feature for controlnet
|
323 |
+
controlnet_cond_scale: float = 1.0,
|
324 |
+
controlnet_step_range: List[float] = [0, 1],
|
325 |
+
# others
|
326 |
+
height: int = 576,
|
327 |
+
width: int = 1024,
|
328 |
+
num_frames: Optional[int] = None,
|
329 |
+
num_inference_steps: int = 25,
|
330 |
+
min_guidance_scale: float = 1.0,
|
331 |
+
max_guidance_scale: float = 3.0,
|
332 |
+
middle_max_guidance: bool = False,
|
333 |
+
fps: int = 6,
|
334 |
+
motion_bucket_id: int = 127,
|
335 |
+
noise_aug_strength: int = 0.02,
|
336 |
+
decode_chunk_size: Optional[int] = None,
|
337 |
+
num_videos_per_prompt: Optional[int] = 1,
|
338 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
339 |
+
latents: Optional[torch.FloatTensor] = None,
|
340 |
+
output_type: Optional[str] = "pil",
|
341 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
342 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
343 |
+
return_dict: bool = True,
|
344 |
+
# update track
|
345 |
+
sift_track_update: bool = False,
|
346 |
+
sift_track_update_with_time: bool = True,
|
347 |
+
sift_track_feat_idx: List[int] = [2, ],
|
348 |
+
sift_track_dist: int = 5,
|
349 |
+
sift_track_double_check_thr: float = 2,
|
350 |
+
anchor_points_flag: Optional[torch.FloatTensor] = None,
|
351 |
+
):
|
352 |
+
r"""
|
353 |
+
The call function to the pipeline for generation.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
357 |
+
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
358 |
+
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
359 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
360 |
+
The height in pixels of the generated image.
|
361 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
362 |
+
The width in pixels of the generated image.
|
363 |
+
num_frames (`int`, *optional*):
|
364 |
+
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
|
365 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
366 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
367 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
368 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
369 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
370 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
371 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
372 |
+
fps (`int`, *optional*, defaults to 7):
|
373 |
+
Frames per second. The rate at which the generated images shall be exported to a video after generation.
|
374 |
+
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
375 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
376 |
+
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
|
377 |
+
noise_aug_strength (`int`, *optional*, defaults to 0.02):
|
378 |
+
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
|
379 |
+
decode_chunk_size (`int`, *optional*):
|
380 |
+
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
|
381 |
+
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
|
382 |
+
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
|
383 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
384 |
+
The number of images to generate per prompt.
|
385 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
386 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
387 |
+
generation deterministic.
|
388 |
+
latents (`torch.FloatTensor`, *optional*):
|
389 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
390 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
391 |
+
tensor is generated by sampling using the supplied random `generator`.
|
392 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
393 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
394 |
+
callback_on_step_end (`Callable`, *optional*):
|
395 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
396 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
397 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
398 |
+
`callback_on_step_end_tensor_inputs`.
|
399 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
400 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
401 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
402 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
403 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
404 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
405 |
+
plain tuple.
|
406 |
+
|
407 |
+
Returns:
|
408 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionInterpControlPipelineOutput`] or `tuple`:
|
409 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionInterpControlPipelineOutput`] is returned,
|
410 |
+
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
|
411 |
+
|
412 |
+
Examples:
|
413 |
+
|
414 |
+
```py
|
415 |
+
from diffusers import StableVideoDiffusionPipeline
|
416 |
+
from diffusers.utils import load_image, export_to_video
|
417 |
+
|
418 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
|
419 |
+
pipe.to("cuda")
|
420 |
+
|
421 |
+
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
|
422 |
+
image = image.resize((1024, 576))
|
423 |
+
|
424 |
+
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
425 |
+
export_to_video(frames, "generated.mp4", fps=7)
|
426 |
+
```
|
427 |
+
"""
|
428 |
+
# 0. Default height and width to unet
|
429 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
430 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
431 |
+
|
432 |
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
433 |
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
434 |
+
|
435 |
+
# 1. Check inputs. Raise error if not correct
|
436 |
+
self.check_inputs(image, height, width)
|
437 |
+
self.check_inputs(image_end, height, width)
|
438 |
+
|
439 |
+
# 2. Define call parameters
|
440 |
+
if isinstance(image, PIL.Image.Image):
|
441 |
+
batch_size = 1
|
442 |
+
elif isinstance(image, list):
|
443 |
+
batch_size = len(image)
|
444 |
+
else:
|
445 |
+
batch_size = image.shape[0]
|
446 |
+
device = self._execution_device
|
447 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
448 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
449 |
+
# corresponds to doing no classifier free guidance.
|
450 |
+
do_classifier_free_guidance = max_guidance_scale > 1.0
|
451 |
+
|
452 |
+
# 3. Encode input image
|
453 |
+
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)
|
454 |
+
image_end_embeddings = self._encode_image(image_end, device, num_videos_per_prompt, do_classifier_free_guidance)
|
455 |
+
|
456 |
+
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
|
457 |
+
# is why it is reduced here.
|
458 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
459 |
+
fps = fps - 1
|
460 |
+
|
461 |
+
# 4. Encode input image using VAE
|
462 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
463 |
+
noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype)
|
464 |
+
image = image + noise_aug_strength * noise
|
465 |
+
# also for image_end
|
466 |
+
image_end = self.image_processor.preprocess(image_end, height=height, width=width)
|
467 |
+
noise = randn_tensor(image_end.shape, generator=generator, device=image_end.device, dtype=image_end.dtype)
|
468 |
+
image_end = image_end + noise_aug_strength * noise
|
469 |
+
|
470 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
471 |
+
if needs_upcasting:
|
472 |
+
self.vae.to(dtype=torch.float32)
|
473 |
+
|
474 |
+
if with_control:
|
475 |
+
# create controlnet input
|
476 |
+
video_gaussion_map = generate_gassian_heatmap(point_tracks, image_size=(width, height))
|
477 |
+
controlnet_image = video_gaussion_map.unsqueeze(0) # (1, f, c, h, w)
|
478 |
+
controlnet_image = controlnet_image.to(device, dtype=image_embeddings.dtype)
|
479 |
+
controlnet_image = torch.cat([controlnet_image] * 2, dim=0)
|
480 |
+
|
481 |
+
point_embedding = point_embedding.to(device).to(image_embeddings.dtype) if point_embedding is not None else None
|
482 |
+
point_tracks = point_tracks.to(device).to(image_embeddings.dtype) # (f, p, 2)
|
483 |
+
|
484 |
+
assert point_tracks.shape[0] == num_frames, f"point_tracks.shape[0] != num_frames, {point_tracks.shape[0]} != {num_frames}"
|
485 |
+
# if point_tracks.shape[0] != num_frames:
|
486 |
+
# # interpolate the point_tracks to the number of frames
|
487 |
+
# point_tracks = rearrange(point_tracks[None], 'b f p c -> b p f c')
|
488 |
+
# point_tracks = torch.nn.functional.interpolate(point_tracks, size=(num_frames, point_tracks.shape[-1]), mode='bilinear', align_corners=False)[0]
|
489 |
+
# point_tracks = rearrange(point_tracks, 'p f c -> f p c')
|
490 |
+
|
491 |
+
image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)
|
492 |
+
image_latents = image_latents.to(image_embeddings.dtype)
|
493 |
+
# also for image_end
|
494 |
+
image_end_latents = self._encode_vae_image(image_end, device, num_videos_per_prompt, do_classifier_free_guidance)
|
495 |
+
image_end_latents = image_end_latents.to(image_end_embeddings.dtype)
|
496 |
+
|
497 |
+
# cast back to fp16 if needed
|
498 |
+
if needs_upcasting:
|
499 |
+
self.vae.to(dtype=torch.float16)
|
500 |
+
|
501 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
502 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
503 |
+
# image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
504 |
+
|
505 |
+
# 5. Get Added Time IDs
|
506 |
+
added_time_ids = self._get_add_time_ids(
|
507 |
+
fps,
|
508 |
+
motion_bucket_id,
|
509 |
+
noise_aug_strength,
|
510 |
+
image_embeddings.dtype,
|
511 |
+
batch_size,
|
512 |
+
num_videos_per_prompt,
|
513 |
+
do_classifier_free_guidance,
|
514 |
+
)
|
515 |
+
added_time_ids = added_time_ids.to(device)
|
516 |
+
|
517 |
+
# 4. Prepare timesteps
|
518 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
519 |
+
timesteps = self.scheduler.timesteps
|
520 |
+
|
521 |
+
# 5. Prepare latent variables
|
522 |
+
num_channels_latents = self.unet.config.in_channels
|
523 |
+
latents = self.prepare_latents(
|
524 |
+
batch_size * num_videos_per_prompt,
|
525 |
+
num_frames,
|
526 |
+
num_channels_latents,
|
527 |
+
height,
|
528 |
+
width,
|
529 |
+
image_embeddings.dtype,
|
530 |
+
device,
|
531 |
+
generator,
|
532 |
+
latents,
|
533 |
+
)
|
534 |
+
|
535 |
+
# Concatenate the `conditional_latents` with the `noisy_latents`.
|
536 |
+
# conditional_latents = conditional_latents.unsqueeze(1).repeat(1, noisy_latents.shape[1], 1, 1, 1)
|
537 |
+
image_latents = image_latents.unsqueeze(1) # (1, 1, 4, h, w)
|
538 |
+
bsz, num_frames, _, latent_h, latent_w = latents.shape
|
539 |
+
bsz_cfg = bsz * 2
|
540 |
+
mask_token = self.unet.mask_token
|
541 |
+
conditional_latents_mask = mask_token.repeat(bsz_cfg, num_frames-2, 1, latent_h, latent_w)
|
542 |
+
image_end_latents = image_end_latents.unsqueeze(1)
|
543 |
+
image_latents = torch.cat([image_latents, conditional_latents_mask, image_end_latents], dim=1)
|
544 |
+
|
545 |
+
# Concatenate additional mask channel
|
546 |
+
mask_channel = torch.ones_like(image_latents[:, :, 0:1, :, :])
|
547 |
+
mask_channel[:, 0:1, :, :, :] = 0
|
548 |
+
mask_channel[:, -1:, :, :, :] = 0
|
549 |
+
image_latents = torch.cat([image_latents, mask_channel], dim=2)
|
550 |
+
|
551 |
+
# concate the conditions
|
552 |
+
image_embeddings = torch.cat([image_embeddings, image_end_embeddings], dim=1)
|
553 |
+
|
554 |
+
# 7. Prepare guidance scale
|
555 |
+
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) # (1, 14)
|
556 |
+
if middle_max_guidance:
|
557 |
+
# big in middle, small at the beginning and end
|
558 |
+
guidance_scale = torch.cat([guidance_scale, guidance_scale.flip(1)], dim=1)
|
559 |
+
# interpolate the guidance scale, from [1, 2*frames] to [1, frames]
|
560 |
+
guidance_scale = torch.nn.functional.interpolate(guidance_scale.unsqueeze(0), size=num_frames, mode='linear', align_corners=False)[0]
|
561 |
+
|
562 |
+
|
563 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
564 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
565 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
566 |
+
|
567 |
+
self._guidance_scale = guidance_scale
|
568 |
+
|
569 |
+
# 9. Denoising loop
|
570 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
571 |
+
self._num_timesteps = len(timesteps)
|
572 |
+
|
573 |
+
if with_control and sift_track_update:
|
574 |
+
num_tracks = point_tracks.shape[1]
|
575 |
+
anchor_point_dict = {}
|
576 |
+
for frame_idx in range(num_frames):
|
577 |
+
anchor_point_dict[frame_idx] = {}
|
578 |
+
for point_idx in range(num_tracks):
|
579 |
+
# add the start and end point
|
580 |
+
if frame_idx in [0, num_frames - 1]:
|
581 |
+
anchor_point_dict[frame_idx][point_idx] = point_tracks[frame_idx][point_idx]
|
582 |
+
else:
|
583 |
+
anchor_point_dict[frame_idx][point_idx] = None
|
584 |
+
|
585 |
+
with_control_global = with_control
|
586 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
587 |
+
for i, t in enumerate(timesteps):
|
588 |
+
|
589 |
+
# NOTE: set the range for control
|
590 |
+
if with_control_global:
|
591 |
+
if controlnet_step_range[0] <= i / num_inference_steps < controlnet_step_range[1]:
|
592 |
+
with_control = True
|
593 |
+
else:
|
594 |
+
with_control = False
|
595 |
+
# print(f"step={i / num_inference_steps}, with_control={with_control}")
|
596 |
+
|
597 |
+
if with_control and sift_track_update and i > 0:
|
598 |
+
# update the point tracks
|
599 |
+
track_list = []
|
600 |
+
for point_idx in range(num_tracks):
|
601 |
+
# get the anchor points
|
602 |
+
current_track = []
|
603 |
+
current_time_to_interp = []
|
604 |
+
for frame_idx in range(num_frames):
|
605 |
+
if anchor_points_flag[frame_idx][point_idx] == 1:
|
606 |
+
current_track.append(anchor_point_dict[frame_idx][point_idx].cpu())
|
607 |
+
if sift_track_update_with_time:
|
608 |
+
current_time_to_interp.append(frame_idx / (num_frames - 1))
|
609 |
+
|
610 |
+
current_track = torch.stack(current_track, dim=0).unsqueeze(1) # (f, 1, 2)
|
611 |
+
# interpolate the anchor points to obtain trajectory
|
612 |
+
current_time_to_interp = np.array(current_time_to_interp) if sift_track_update_with_time else None
|
613 |
+
current_track = interpolate_trajectory(current_track, num_frames=num_frames, t=current_time_to_interp)
|
614 |
+
track_list.append(current_track)
|
615 |
+
point_tracks = torch.concat(track_list, dim=1).to(device).to(image_embeddings.dtype) # (f, p, 2)
|
616 |
+
|
617 |
+
# expand the latents if we are doing classifier free guidance
|
618 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
619 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
620 |
+
|
621 |
+
# Concatenate image_latents over channels dimention
|
622 |
+
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
|
623 |
+
|
624 |
+
down_block_res_samples = mid_block_res_sample = None
|
625 |
+
if with_control:
|
626 |
+
if i == 0:
|
627 |
+
print(f"controlnet_cond_scale: {controlnet_cond_scale}")
|
628 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
629 |
+
latent_model_input,
|
630 |
+
t,
|
631 |
+
encoder_hidden_states=image_embeddings,
|
632 |
+
controlnet_cond=controlnet_image,
|
633 |
+
added_time_ids=added_time_ids,
|
634 |
+
conditioning_scale=controlnet_cond_scale,
|
635 |
+
point_embedding=point_embedding if with_id_feature else None, # NOTE
|
636 |
+
point_tracks=point_tracks,
|
637 |
+
guess_mode=False,
|
638 |
+
return_dict=False,
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
if i == 0:
|
642 |
+
print("Controlnet is not used")
|
643 |
+
|
644 |
+
kwargs = {}
|
645 |
+
|
646 |
+
outputs = self.unet(
|
647 |
+
latent_model_input,
|
648 |
+
t,
|
649 |
+
encoder_hidden_states=image_embeddings,
|
650 |
+
down_block_additional_residuals=down_block_res_samples,
|
651 |
+
mid_block_additional_residual=mid_block_res_sample,
|
652 |
+
added_time_ids=added_time_ids,
|
653 |
+
return_dict=False,
|
654 |
+
**kwargs,
|
655 |
+
)
|
656 |
+
|
657 |
+
noise_pred, intermediate_features = outputs
|
658 |
+
|
659 |
+
if with_control and sift_track_update:
|
660 |
+
# shape: [b*f, c, h, w], b=2 for cfg
|
661 |
+
matching_features = []
|
662 |
+
for feat_idx in sift_track_feat_idx:
|
663 |
+
feat = intermediate_features[feat_idx]
|
664 |
+
feat = F.interpolate(feat, (height, width), mode='bilinear')
|
665 |
+
matching_features.append(feat)
|
666 |
+
|
667 |
+
matching_features = torch.cat(matching_features, dim=1) # [b*f, c, h, w]
|
668 |
+
|
669 |
+
# shape: [b*f, c, h, w]
|
670 |
+
# self.guidance_scale: [1, f, 1, 1, 1]
|
671 |
+
# matching_features:
|
672 |
+
assert do_classifier_free_guidance
|
673 |
+
matching_features = rearrange(matching_features, '(b f) c h w -> b f c h w', b=2)
|
674 |
+
|
675 |
+
# # strategy 1: discard the unconditional branch feature maps
|
676 |
+
# matching_features = matching_features[1].unsqueeze(dim=0) # (b, f, c, h, w), b=1
|
677 |
+
# # strategy 2: concat pos and neg branch feature maps for motion-sup and point tracking
|
678 |
+
# matching_features = torch.cat([matching_features[0], matching_features[1]], dim=1).unsqueeze(dim=0) # (b, f, 2c, h, w), b=1
|
679 |
+
# # strategy 3: concat pos and neg branch feature maps with guidance_scale consideration
|
680 |
+
# coef = self.guidance_scale / (2 * self.guidance_scale - 1.0)
|
681 |
+
# coef = coef.squeeze(dim=0)
|
682 |
+
# matching_features = torch.cat(
|
683 |
+
# [(1 - coef) * matching_features[0], coef * matching_features[1]], dim=1,
|
684 |
+
# ).unsqueeze(dim=0) # (b, f, 2c, h, w), b=1
|
685 |
+
# strategy 4: same as cfg
|
686 |
+
matching_features = matching_features[0] + self.guidance_scale.squeeze(0) * (matching_features[1] - matching_features[0])
|
687 |
+
matching_features = matching_features.unsqueeze(dim=0) # (b, f, c, h, w), b=1
|
688 |
+
|
689 |
+
# perform point matching in intermediate frames
|
690 |
+
feature_start = matching_features[:, 0]
|
691 |
+
feature_end = matching_features[:, -1]
|
692 |
+
hanlde_points_start = point_tracks[0] # (f, p, 2) -> (p, 2)
|
693 |
+
hanlde_points_end = point_tracks[-1] # (f, p, 2) -> (p, 2)
|
694 |
+
for frame_idx in range(1, num_frames - 1):
|
695 |
+
feature_frame = matching_features[:, frame_idx]
|
696 |
+
handle_points = point_tracks[frame_idx] # (f, p, 2) -> (p, 2)
|
697 |
+
# forward matching
|
698 |
+
handle_points_forward = point_tracking(feature_start, feature_frame, handle_points, hanlde_points_start, sift_track_dist)
|
699 |
+
# backward matching
|
700 |
+
handle_points_backward = point_tracking(feature_end, feature_frame, handle_points, hanlde_points_end, sift_track_dist)
|
701 |
+
|
702 |
+
# bi-directional check
|
703 |
+
for point_idx, (point_forward, point_backward) in enumerate(zip(handle_points_forward, handle_points_backward)):
|
704 |
+
if torch.norm(point_forward - point_backward) < sift_track_double_check_thr:
|
705 |
+
# update the point
|
706 |
+
# point_tracks[frame_idx][point_idx] = (point_forward + point_backward) / 2
|
707 |
+
anchor_point_dict[frame_idx][point_idx] = (point_forward + point_backward) / 2
|
708 |
+
anchor_points_flag[frame_idx][point_idx] = 1
|
709 |
+
|
710 |
+
# perform guidance
|
711 |
+
if do_classifier_free_guidance:
|
712 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
713 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
714 |
+
|
715 |
+
# compute the previous noisy sample x_t -> x_t-1
|
716 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
717 |
+
|
718 |
+
if callback_on_step_end is not None:
|
719 |
+
callback_kwargs = {}
|
720 |
+
for k in callback_on_step_end_tensor_inputs:
|
721 |
+
callback_kwargs[k] = locals()[k]
|
722 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
723 |
+
|
724 |
+
latents = callback_outputs.pop("latents", latents)
|
725 |
+
|
726 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
727 |
+
progress_bar.update()
|
728 |
+
|
729 |
+
if not output_type == "latent":
|
730 |
+
# cast back to fp16 if needed
|
731 |
+
if needs_upcasting:
|
732 |
+
self.vae.to(dtype=torch.float16)
|
733 |
+
# self.vae.to(dtype=torch.float32)
|
734 |
+
# latents = latents.to(torch.float32)
|
735 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
736 |
+
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
|
737 |
+
else:
|
738 |
+
frames = latents
|
739 |
+
|
740 |
+
self.maybe_free_model_hooks()
|
741 |
+
|
742 |
+
if not return_dict:
|
743 |
+
return frames
|
744 |
+
|
745 |
+
return StableVideoDiffusionInterpControlPipelineOutput(frames=frames)
|
746 |
+
|
747 |
+
|
748 |
+
# resizing utils
|
749 |
+
# TODO: clean up later
|
750 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
751 |
+
h, w = input.shape[-2:]
|
752 |
+
factors = (h / size[0], w / size[1])
|
753 |
+
|
754 |
+
# First, we have to determine sigma
|
755 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
756 |
+
sigmas = (
|
757 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
758 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
759 |
+
)
|
760 |
+
|
761 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
762 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
763 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
764 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
765 |
+
|
766 |
+
# Make sure it is odd
|
767 |
+
if (ks[0] % 2) == 0:
|
768 |
+
ks = ks[0] + 1, ks[1]
|
769 |
+
|
770 |
+
if (ks[1] % 2) == 0:
|
771 |
+
ks = ks[0], ks[1] + 1
|
772 |
+
|
773 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
774 |
+
|
775 |
+
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
|
776 |
+
return output
|
777 |
+
|
778 |
+
|
779 |
+
def _compute_padding(kernel_size):
|
780 |
+
"""Compute padding tuple."""
|
781 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
782 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
783 |
+
if len(kernel_size) < 2:
|
784 |
+
raise AssertionError(kernel_size)
|
785 |
+
computed = [k - 1 for k in kernel_size]
|
786 |
+
|
787 |
+
# for even kernels we need to do asymmetric padding :(
|
788 |
+
out_padding = 2 * len(kernel_size) * [0]
|
789 |
+
|
790 |
+
for i in range(len(kernel_size)):
|
791 |
+
computed_tmp = computed[-(i + 1)]
|
792 |
+
|
793 |
+
pad_front = computed_tmp // 2
|
794 |
+
pad_rear = computed_tmp - pad_front
|
795 |
+
|
796 |
+
out_padding[2 * i + 0] = pad_front
|
797 |
+
out_padding[2 * i + 1] = pad_rear
|
798 |
+
|
799 |
+
return out_padding
|
800 |
+
|
801 |
+
|
802 |
+
def _filter2d(input, kernel):
|
803 |
+
# prepare kernel
|
804 |
+
b, c, h, w = input.shape
|
805 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
806 |
+
|
807 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
808 |
+
|
809 |
+
height, width = tmp_kernel.shape[-2:]
|
810 |
+
|
811 |
+
padding_shape: list[int] = _compute_padding([height, width])
|
812 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
813 |
+
|
814 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
815 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
816 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
817 |
+
|
818 |
+
# convolve the tensor with the kernel.
|
819 |
+
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
820 |
+
|
821 |
+
out = output.view(b, c, h, w)
|
822 |
+
return out
|
823 |
+
|
824 |
+
|
825 |
+
def _gaussian(window_size: int, sigma):
|
826 |
+
if isinstance(sigma, float):
|
827 |
+
sigma = torch.tensor([[sigma]])
|
828 |
+
|
829 |
+
batch_size = sigma.shape[0]
|
830 |
+
|
831 |
+
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
832 |
+
|
833 |
+
if window_size % 2 == 0:
|
834 |
+
x = x + 0.5
|
835 |
+
|
836 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
837 |
+
|
838 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
839 |
+
|
840 |
+
|
841 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
842 |
+
if isinstance(sigma, tuple):
|
843 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
844 |
+
else:
|
845 |
+
sigma = sigma.to(dtype=input.dtype)
|
846 |
+
|
847 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
848 |
+
bs = sigma.shape[0]
|
849 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
850 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
851 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
852 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
853 |
+
|
854 |
+
return out
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.1+cu116
|
2 |
+
torchvision==0.14.1+cu116
|
3 |
+
diffusers==0.24.0
|
4 |
+
transformers==4.27.0
|
5 |
+
xformers==0.0.16
|
6 |
+
imageio==2.27.0
|
7 |
+
decord==0.6.0
|
8 |
+
einops
|
9 |
+
triton==2.1.0
|
10 |
+
opencv-python
|
11 |
+
av
|
12 |
+
accelerate==0.27.2
|