Spaces:
wssb
/
Runtime error

File size: 5,581 Bytes
d2a06b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
import warnings
from typing import Optional, Tuple, Union

import torch

from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import KarrasVeScheduler


class KarrasVePipeline(DiffusionPipeline):
    r"""
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.

    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`KarrasVeScheduler`]):
            Scheduler for the diffusion process to be used in combination with `unet` to denoise the encoded image.
    """

    # add type hints for linting
    unet: UNet2DModel
    scheduler: KarrasVeScheduler

    def __init__(self, unet: UNet2DModel, scheduler: KarrasVeScheduler):
        super().__init__()
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 1,
        num_inference_steps: int = 50,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                The number of images to generate.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
        """
        if "torch_device" in kwargs:
            device = kwargs.pop("torch_device")
            warnings.warn(
                "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
                " Consider using `pipe.to(torch_device)` instead."
            )

            # Set device as before (to be removed in 0.3.0)
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
            self.to(device)

        img_size = self.unet.config.sample_size
        shape = (batch_size, 3, img_size, img_size)

        model = self.unet

        # sample x_0 ~ N(0, sigma_0^2 * I)
        sample = torch.randn(*shape) * self.scheduler.config.sigma_max
        sample = sample.to(self.device)

        self.scheduler.set_timesteps(num_inference_steps)

        for t in self.progress_bar(self.scheduler.timesteps):
            # here sigma_t == t_i from the paper
            sigma = self.scheduler.schedule[t]
            sigma_prev = self.scheduler.schedule[t - 1] if t > 0 else 0

            # 1. Select temporarily increased noise level sigma_hat
            # 2. Add new noise to move from sample_i to sample_hat
            sample_hat, sigma_hat = self.scheduler.add_noise_to_input(sample, sigma, generator=generator)

            # 3. Predict the noise residual given the noise magnitude `sigma_hat`
            # The model inputs and output are adjusted by following eq. (213) in [1].
            model_output = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample

            # 4. Evaluate dx/dt at sigma_hat
            # 5. Take Euler step from sigma to sigma_prev
            step_output = self.scheduler.step(model_output, sigma_hat, sigma_prev, sample_hat)

            if sigma_prev != 0:
                # 6. Apply 2nd order correction
                # The model inputs and output are adjusted by following eq. (213) in [1].
                model_output = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample
                step_output = self.scheduler.step_correct(
                    model_output,
                    sigma_hat,
                    sigma_prev,
                    sample_hat,
                    step_output.prev_sample,
                    step_output["derivative"],
                )
            sample = step_output.prev_sample

        sample = (sample / 2 + 0.5).clamp(0, 1)
        image = sample.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(sample)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)