machineuser commited on
Commit
6c7ce80
1 Parent(s): 9c0be59

Sync widgets demo

Browse files
packages/tasks/package.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "name": "@huggingface/tasks",
3
  "packageManager": "[email protected]",
4
- "version": "0.0.5",
5
  "description": "List of ML tasks for huggingface.co/tasks",
6
  "repository": "https://github.com/huggingface/huggingface.js.git",
7
  "publishConfig": {
 
1
  {
2
  "name": "@huggingface/tasks",
3
  "packageManager": "[email protected]",
4
+ "version": "0.0.6",
5
  "description": "List of ML tasks for huggingface.co/tasks",
6
  "repository": "https://github.com/huggingface/huggingface.js.git",
7
  "publishConfig": {
packages/tasks/src/const.ts CHANGED
@@ -19,6 +19,7 @@ export const TASKS_MODEL_LIBRARIES: Record<PipelineType, ModelLibraryKey[]> = {
19
  "image-to-image": [],
20
  "image-to-text": ["transformers.js"],
21
  "video-classification": [],
 
22
  "multiple-choice": ["transformers"],
23
  "object-detection": ["transformers", "transformers.js"],
24
  other: [],
@@ -56,4 +57,5 @@ export const TASKS_MODEL_LIBRARIES: Record<PipelineType, ModelLibraryKey[]> = {
56
  "voice-activity-detection": [],
57
  "zero-shot-classification": ["transformers", "transformers.js"],
58
  "zero-shot-image-classification": ["transformers.js"],
 
59
  };
 
19
  "image-to-image": [],
20
  "image-to-text": ["transformers.js"],
21
  "video-classification": [],
22
+ "mask-generation": ["transformers"],
23
  "multiple-choice": ["transformers"],
24
  "object-detection": ["transformers", "transformers.js"],
25
  other: [],
 
57
  "voice-activity-detection": [],
58
  "zero-shot-classification": ["transformers", "transformers.js"],
59
  "zero-shot-image-classification": ["transformers.js"],
60
+ "zero-shot-object-detection": ["transformers"],
61
  };
packages/tasks/src/index.ts CHANGED
@@ -8,6 +8,10 @@ export {
8
  type Modality,
9
  MODALITIES,
10
  MODALITY_LABELS,
 
 
11
  } from "./pipelines";
12
- export { ModelLibrary } from "./modelLibraries";
13
  export type { ModelLibraryKey } from "./modelLibraries";
 
 
 
8
  type Modality,
9
  MODALITIES,
10
  MODALITY_LABELS,
11
+ SUBTASK_TYPES,
12
+ PIPELINE_TYPES_SET,
13
  } from "./pipelines";
14
+ export { ModelLibrary, ALL_DISPLAY_MODEL_LIBRARY_KEYS } from "./modelLibraries";
15
  export type { ModelLibraryKey } from "./modelLibraries";
16
+
17
+ export { TAG_NFAA_CONTENT, OTHER_TAGS_SUGGESTIONS, TAG_TEXT_GENERATION_INFERENCE, TAG_CUSTOM_CODE } from "./tags";
packages/tasks/src/modelLibraries.ts CHANGED
@@ -41,3 +41,7 @@ export enum ModelLibrary {
41
  }
42
 
43
  export type ModelLibraryKey = keyof typeof ModelLibrary;
 
 
 
 
 
41
  }
42
 
43
  export type ModelLibraryKey = keyof typeof ModelLibrary;
44
+
45
+ export const ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
46
+ (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
47
+ );
packages/tasks/src/pipelines.ts CHANGED
@@ -606,6 +606,16 @@ export const PIPELINE_DATA = {
606
  modality: "multimodal",
607
  color: "green",
608
  },
 
 
 
 
 
 
 
 
 
 
609
  other: {
610
  name: "Other",
611
  modality: "other",
@@ -616,4 +626,11 @@ export const PIPELINE_DATA = {
616
  } satisfies Record<string, PipelineData>;
617
 
618
  export type PipelineType = keyof typeof PIPELINE_DATA;
 
619
  export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];
 
 
 
 
 
 
 
606
  modality: "multimodal",
607
  color: "green",
608
  },
609
+ "mask-generation": {
610
+ name: "Mask Generation",
611
+ modality: "cv",
612
+ color: "indigo",
613
+ },
614
+ "zero-shot-object-detection": {
615
+ name: "Zero-Shot Object Detection",
616
+ modality: "cv",
617
+ color: "yellow",
618
+ },
619
  other: {
620
  name: "Other",
621
  modality: "other",
 
626
  } satisfies Record<string, PipelineData>;
627
 
628
  export type PipelineType = keyof typeof PIPELINE_DATA;
629
+
630
  export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];
631
+
632
+ export const SUBTASK_TYPES = Object.values(PIPELINE_DATA)
633
+ .flatMap((data) => ("subtasks" in data ? data.subtasks : []))
634
+ .map((s) => s.type);
635
+
636
+ export const PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
packages/tasks/src/tags.ts ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export const TAG_NFAA_CONTENT = "not-for-all-audiences";
2
+ export const OTHER_TAGS_SUGGESTIONS = [
3
+ "chemistry",
4
+ "biology",
5
+ "finance",
6
+ "legal",
7
+ "music",
8
+ "art",
9
+ "code",
10
+ "climate",
11
+ "medical",
12
+ TAG_NFAA_CONTENT,
13
+ ];
14
+ export const TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
15
+ export const TAG_CUSTOM_CODE = "custom_code";
packages/tasks/src/tasksData.ts CHANGED
@@ -54,6 +54,7 @@ export const TASKS_DATA: Record<PipelineType, TaskData | undefined> = {
54
  "image-segmentation": getData("image-segmentation", imageSegmentation),
55
  "image-to-image": getData("image-to-image", imageToImage),
56
  "image-to-text": getData("image-to-text", imageToText),
 
57
  "multiple-choice": undefined,
58
  "object-detection": getData("object-detection", objectDetection),
59
  "video-classification": getData("video-classification", videoClassification),
@@ -84,6 +85,7 @@ export const TASKS_DATA: Record<PipelineType, TaskData | undefined> = {
84
  "voice-activity-detection": undefined,
85
  "zero-shot-classification": getData("zero-shot-classification", zeroShotClassification),
86
  "zero-shot-image-classification": getData("zero-shot-image-classification", zeroShotImageClassification),
 
87
  } as const;
88
 
89
  /**
 
54
  "image-segmentation": getData("image-segmentation", imageSegmentation),
55
  "image-to-image": getData("image-to-image", imageToImage),
56
  "image-to-text": getData("image-to-text", imageToText),
57
+ "mask-generation": getData("mask-generation", placeholder),
58
  "multiple-choice": undefined,
59
  "object-detection": getData("object-detection", objectDetection),
60
  "video-classification": getData("video-classification", videoClassification),
 
85
  "voice-activity-detection": undefined,
86
  "zero-shot-classification": getData("zero-shot-classification", zeroShotClassification),
87
  "zero-shot-image-classification": getData("zero-shot-image-classification", zeroShotImageClassification),
88
+ "zero-shot-object-detection": getData("zero-shot-object-detection", placeholder),
89
  } as const;
90
 
91
  /**
packages/tasks/src/video-classification/about.md CHANGED
@@ -15,34 +15,14 @@ Models trained in video classification can improve user experience by organizing
15
  Below you can find code for inferring with a pre-trained video classification model.
16
 
17
  ```python
18
- from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
19
- from pytorchvideo.transforms import UniformTemporalSubsample
20
- from pytorchvideo.data.encoded_video import EncodedVideo
21
-
22
-
23
- # Load the video.
24
- video = EncodedVideo.from_path("path_to_video.mp4")
25
- video_data = video.get_clip(start_sec=0, end_sec=4.0)["video"]
26
-
27
- # Sub-sample a fixed set of frames and convert them to a NumPy array.
28
- num_frames = 16
29
- subsampler = UniformTemporalSubsample(num_frames)
30
- subsampled_frames = subsampler(video_data)
31
- video_data_np = subsampled_frames.numpy().transpose(1, 2, 3, 0)
32
-
33
- # Preprocess the video frames.
34
- inputs = feature_extractor(list(video_data_np), return_tensors="pt")
35
-
36
- # Run inference
37
- with torch.no_grad():
38
- outputs = model(**inputs)
39
- logits = outputs.logits
40
-
41
- # Model predicts one of the 400 Kinetics 400 classes
42
- predicted_label = logits.argmax(-1).item()
43
- print(model.config.id2label[predicted_label])
44
- # `eating spaghetti` (if you chose this video:
45
- # https://hf.co/datasets/nielsr/video-demo/resolve/main/eating_spaghetti.mp4)
46
  ```
47
 
48
  ## Useful Resources
 
15
  Below you can find code for inferring with a pre-trained video classification model.
16
 
17
  ```python
18
+ from transformers import pipeline
19
+
20
+ pipe = pipeline(task = "video-classification", model="nateraw/videomae-base-finetuned-ucf101-subset")
21
+ pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/basketball.avi?download=true")
22
+
23
+ #[{'score': 0.90, 'label': 'BasketballDunk'},
24
+ # {'score': 0.02, 'label': 'BalanceBeam'},
25
+ # ... ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ```
27
 
28
  ## Useful Resources
packages/widgets/src/lib/components/Icons/IconMaskGeneration.svelte ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <script lang="ts">
2
+ export let classNames = "";
3
+ </script>
4
+
5
+ <svg
6
+ class={classNames}
7
+ xmlns="http://www.w3.org/2000/svg"
8
+ xmlns:xlink="http://www.w3.org/1999/xlink"
9
+ aria-hidden="true"
10
+ focusable="false"
11
+ role="img"
12
+ width="1em"
13
+ height="1em"
14
+ preserveAspectRatio="xMidYMid meet"
15
+ viewBox="0 0 12 12"
16
+ ><path
17
+ fill="currentColor"
18
+ fill-rule="evenodd"
19
+ d="M1.84.73h6.63a.7.7 0 0 1 .7.7v4.36h-.7V1.43H1.84v3.54l.9-.9a.7.7 0 0 1 1 0l1.74 1.75a.79.79 0 0 0-.52.47L3.24 4.57l-1.4 1.4v2.08h3.07v.7H1.84a.7.7 0 0 1-.7-.7V1.43a.7.7 0 0 1 .7-.7Zm5.38 4.74.32.32H5.91l.32-.32a.7.7 0 0 1 .99 0Zm-.61-1.43A1.05 1.05 0 1 1 5.45 2.3 1.05 1.05 0 0 1 6.6 4.04Zm-.39-1.16a.35.35 0 1 0-.39.58.35.35 0 0 0 .4-.58Zm3.99 8.43a.65.65 0 0 0 .56-.64v-1.3h-.65.65v1.3a.65.65 0 0 1-.56.64Zm-.09-.64h-1.3 1.3Zm-1.33.68h1.33a.68.68 0 0 0 .68-.68V9.34h-.7v1.3H8.8v.71ZM6.22 8.43v-1.3 1.3Zm1.3-1.3v-.66h-1.3 1.3v.65ZM5.54 8.45h.7v-1.3h1.3v-.72H6.23a.68.68 0 0 0-.68.68v1.34Zm1.98 2.86v-.65h-1.3v-1.3h-.65.65v1.3h1.3v.65ZM5.54 9.34v1.33a.68.68 0 0 0 .68.68h1.33v-.71h-1.3v-1.3h-.71Zm5.23-.91v-1.3a.65.65 0 0 0-.65-.66h-1.3 1.3a.65.65 0 0 1 .65.65v1.3ZM8.8 6.44v.71h1.3v1.3h.71V7.13a.68.68 0 0 0-.68-.68H8.8Z"
20
+ clip-rule="evenodd"
21
+ /></svg
22
+ >
packages/widgets/src/lib/components/Icons/IconZeroShotObjectDetection.svelte ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <script lang="ts">
2
+ export let classNames = "";
3
+ </script>
4
+
5
+ <svg
6
+ class={classNames}
7
+ xmlns="http://www.w3.org/2000/svg"
8
+ xmlns:xlink="http://www.w3.org/1999/xlink"
9
+ aria-hidden="true"
10
+ focusable="false"
11
+ role="img"
12
+ width="1em"
13
+ height="1em"
14
+ preserveAspectRatio="xMidYMid meet"
15
+ viewBox="0 0 12 12"
16
+ ><path
17
+ fill="currentColor"
18
+ fill-rule="evenodd"
19
+ d="M1.84.73h6.63a.7.7 0 0 1 .7.7v4.36h-.7V1.43H1.84v3.54l.9-.9a.7.7 0 0 1 1 0l1.74 1.75a.79.79 0 0 0-.52.47L3.24 4.57l-1.4 1.4v2.08h3.07v.7H1.84a.7.7 0 0 1-.7-.7V1.43a.7.7 0 0 1 .7-.7Zm5.38 4.74.32.32H5.91l.32-.32a.7.7 0 0 1 .99 0Zm-.61-1.43A1.05 1.05 0 1 1 5.45 2.3 1.05 1.05 0 0 1 6.6 4.04Zm-.39-1.16a.35.35 0 1 0-.39.58.35.35 0 0 0 .4-.58Z"
20
+ clip-rule="evenodd"
21
+ /><path
22
+ fill="currentColor"
23
+ fill-rule="evenodd"
24
+ d="M7.77 7.07h-1.6v1.42h1.6V7.07Zm-2.2-.6v2.62h2.8V6.47h-2.8ZM8.53 10.17H6.17v.43h2.36v-.43Zm-2.96-.6v1.63h3.55V9.57H5.58ZM10.16 7.07h-.72v1.42h.72V7.07Zm-1.32-.6v2.62h1.92V6.47H8.84Z"
25
+ clip-rule="evenodd"
26
+ /></svg
27
+ >
packages/widgets/src/lib/components/InferenceWidget/InferenceWidget.svelte CHANGED
@@ -27,6 +27,7 @@
27
  import ZeroShotClassificationWidget from "./widgets/ZeroShowClassificationWidget/ZeroShotClassificationWidget.svelte";
28
  import ZeroShotImageClassificationWidget from "./widgets/ZeroShotImageClassificationWidget/ZeroShotImageClassificationWidget.svelte";
29
  import type { PipelineType } from "@huggingface/tasks";
 
30
 
31
  export let apiToken: WidgetProps["apiToken"] = undefined;
32
  export let callApiOnMount = false;
@@ -97,4 +98,7 @@
97
 
98
  {#if widgetComponent}
99
  <svelte:component this={widgetComponent} {...widgetProps} />
 
 
 
100
  {/if}
 
27
  import ZeroShotClassificationWidget from "./widgets/ZeroShowClassificationWidget/ZeroShotClassificationWidget.svelte";
28
  import ZeroShotImageClassificationWidget from "./widgets/ZeroShotImageClassificationWidget/ZeroShotImageClassificationWidget.svelte";
29
  import type { PipelineType } from "@huggingface/tasks";
30
+ import WidgetInfo from "./shared/WidgetInfo/WidgetInfo.svelte";
31
 
32
  export let apiToken: WidgetProps["apiToken"] = undefined;
33
  export let callApiOnMount = false;
 
98
 
99
  {#if widgetComponent}
100
  <svelte:component this={widgetComponent} {...widgetProps} />
101
+ {:else}
102
+ <!-- Still show widget error (such as "pipeline not support", etc.) when there is no widget for a task -->
103
+ <WidgetInfo {model} />
104
  {/if}
packages/widgets/src/lib/components/InferenceWidget/shared/WidgetInfo/WidgetInfo.svelte CHANGED
@@ -5,8 +5,8 @@
5
  import IconInfo from "$lib/components/Icons/IconInfo.svelte";
6
 
7
  export let model: WidgetProps["model"];
8
- export let computeTime: string;
9
- export let error: string;
10
  export let modelLoadInfo: ModelLoadInfo | undefined = undefined;
11
  export let modelTooBig = false;
12
 
 
5
  import IconInfo from "$lib/components/Icons/IconInfo.svelte";
6
 
7
  export let model: WidgetProps["model"];
8
+ export let computeTime: string = "";
9
+ export let error: string = "";
10
  export let modelLoadInfo: ModelLoadInfo | undefined = undefined;
11
  export let modelTooBig = false;
12
 
packages/widgets/src/lib/components/PipelineIcon/PipelineIcon.svelte CHANGED
@@ -35,6 +35,8 @@
35
  import IconUnconditionalImageGeneration from "../Icons/IconUnconditionalImageGeneration.svelte";
36
  import IconDocumentQuestionAnswering from "../Icons/IconDocumentQuestionAnswering.svelte";
37
  import IconGraphML from "../Icons/IconGraphML.svelte";
 
 
38
  import type { PipelineType } from "@huggingface/tasks";
39
 
40
  export let classNames = "";
@@ -80,6 +82,8 @@
80
  "tabular-regression": IconTabularRegression,
81
  "text-to-video": IconTextToVideo,
82
  "document-question-answering": IconDocumentQuestionAnswering,
 
 
83
  };
84
 
85
  $: iconComponent =
 
35
  import IconUnconditionalImageGeneration from "../Icons/IconUnconditionalImageGeneration.svelte";
36
  import IconDocumentQuestionAnswering from "../Icons/IconDocumentQuestionAnswering.svelte";
37
  import IconGraphML from "../Icons/IconGraphML.svelte";
38
+ import IconZeroShotObjectDetection from "../Icons/IconZeroShotClassification.svelte";
39
+ import IconMaskGeneration from "../Icons/IconMaskGeneration.svelte";
40
  import type { PipelineType } from "@huggingface/tasks";
41
 
42
  export let classNames = "";
 
82
  "tabular-regression": IconTabularRegression,
83
  "text-to-video": IconTextToVideo,
84
  "document-question-answering": IconDocumentQuestionAnswering,
85
+ "mask-generation": IconMaskGeneration,
86
+ "zero-shot-object-detection": IconZeroShotObjectDetection,
87
  };
88
 
89
  $: iconComponent =
packages/widgets/src/routes/+page.svelte CHANGED
@@ -442,8 +442,8 @@
442
  const modelsDisabled: ModelData[] = [
443
  {
444
  id: "gpt2",
445
- pipeline_tag: "text-generation",
446
- inference: InferenceDisplayability.CustomCode,
447
  },
448
  {
449
  id: "gpt2",
 
442
  const modelsDisabled: ModelData[] = [
443
  {
444
  id: "gpt2",
445
+ pipeline_tag: undefined,
446
+ inference: InferenceDisplayability.PipelineNotDetected,
447
  },
448
  {
449
  id: "gpt2",
pnpm-lock.yaml CHANGED
The diff for this file is too large to render. See raw diff