vislupus commited on
Commit
50d8518
1 Parent(s): 018d5d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -62
app.py CHANGED
@@ -1,63 +1,59 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from langchain.prompts import ChatPromptTemplate
4
+ from langchain.chains import RetrievalQA, ConversationalRetrievalChain
5
+ from langchain.memory import ConversationBufferMemory
6
+
7
+ def rag_retriever(message, history, system_prompt, num_sources=4, temperature=0):
8
+ chat = ChatGroq(temperature=temperature, model_name="llama3-70b-8192", api_key=os.getenv("GROQ_API_KEY"))
9
+
10
+ prompt_template = ChatPromptTemplate.from_messages([
11
+ ("system", system_prompt+"""
12
+
13
+ Use the following pieces of context to answer the user's question.
14
+ ----------------
15
+ {context}"""),
16
+ ("human", "{question}")
17
+ ])
18
+
19
+ memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
20
+
21
+ retriever = store.as_retriever(search_type="similarity", search_kwargs={'k': num_sources})
22
+
23
+ chain = ConversationalRetrievalChain.from_llm(llm=chat,
24
+ retriever=retriever,
25
+ return_source_documents=True,
26
+ memory=memory,
27
+ combine_docs_chain_kwargs={"prompt": prompt_template})
28
+
29
+
30
+ output = chain.invoke({"question": message})
31
+
32
+ sources = ""
33
+ for doc in output['source_documents']:
34
+ source_content = doc.page_content.strip().replace("\r\n", " ").replace("\r", " ").replace("\n", " ")
35
+ sources += f'<span style="color:green">Страница: {doc.metadata["page"]+1}</span><br><span style="color:gray">{source_content}</span><br><br>'
36
+
37
+ response = f"""<h5>Отговор:</h5>{output['answer']}<br><h5>Източници:</h5>{sources}"""
38
+ return response
39
+
40
+
41
+ rag = gr.ChatInterface(rag_retriever,
42
+ examples=[["Каква е целта на настоящия регламент", "You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Provide a detailed and comprehensive answer, incorporating as much relevant information as possible. Always respond in Bulgarian, regardless of the language used in the question."],
43
+ ["Какво са Системите с ИИ", "You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Always respond in Bulgarian, regardless of the language used in the question."],
44
+ ["Какво е равнище на технологично развитие", "You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Always respond in Bulgarian, regardless of the language used in the question."]],
45
+ title="Чатене с документа AI Act",
46
+ description="Питайте каквото пожелаете, но пишете на български.",
47
+ chatbot=gr.Chatbot(placeholder="<strong>Вашият личен AI Act помощник</strong><br>Питайте каквото пожелаете, но пишете на български."),
48
+ textbox=gr.Textbox(placeholder="Задайте своя въпрос...", container=False, scale=7),
49
+ retry_btn="Отново",
50
+ undo_btn="Назад",
51
+ clear_btn="Изчистете",
52
+ submit_btn="Изпрати",
53
+ additional_inputs=[gr.components.Textbox("You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Always respond in Bulgarian, regardless of the language used in the question.", label="System Prompt"),
54
+ gr.components.Slider(minimum=1, maximum=10, value=4, step=1, label="Брой препратки"),
55
+ gr.components.Slider(minimum=0, maximum=2, value=0, label="Креативност на модела", info="Ако е много високо моделът си измисля, но може да напише интересни неща."),],
56
+ additional_inputs_accordion=gr.Accordion("Допълнителни настройки", open=False),
57
+ )
58
+
59
+ rag.launch()