virendravaishnav commited on
Commit
7fee682
1 Parent(s): 1229304

Updated with OCR model and Gradio integration

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -1,11 +1,12 @@
1
  import gradio as gr
2
- from transformers import AutoProcessor, AutoModel
3
  import torch
4
 
5
  repo_id = "OpenGVLab/InternVL2-1B"
6
 
7
- # Load the processor and model directly from the Hub
8
- processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
 
9
  model = AutoModel.from_pretrained(
10
  repo_id,
11
  trust_remote_code=True,
@@ -22,9 +23,9 @@ def analyze_image(image):
22
  text = "describe this image"
23
 
24
  # Process the image
25
- image_inputs = processor.image_processor(images=img, return_tensors="pt").to(device)
26
  # Process the text
27
- text_inputs = processor.tokenizer(text, return_tensors="pt").to(device)
28
 
29
  # Combine the inputs
30
  inputs = {
@@ -37,7 +38,7 @@ def analyze_image(image):
37
  outputs = model.generate(**inputs)
38
 
39
  # Decode the outputs
40
- generated_text = processor.tokenizer.decode(outputs[0], skip_special_tokens=True)
41
  return generated_text
42
  except Exception as e:
43
  return f"An error occurred: {str(e)}"
 
1
  import gradio as gr
2
+ from transformers import AutoImageProcessor, AutoTokenizer, AutoModel
3
  import torch
4
 
5
  repo_id = "OpenGVLab/InternVL2-1B"
6
 
7
+ # Load the image processor, tokenizer, and model directly from the Hub
8
+ image_processor = AutoImageProcessor.from_pretrained(repo_id, trust_remote_code=True)
9
+ tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True)
10
  model = AutoModel.from_pretrained(
11
  repo_id,
12
  trust_remote_code=True,
 
23
  text = "describe this image"
24
 
25
  # Process the image
26
+ image_inputs = image_processor(images=img, return_tensors="pt").to(device)
27
  # Process the text
28
+ text_inputs = tokenizer(text, return_tensors="pt").to(device)
29
 
30
  # Combine the inputs
31
  inputs = {
 
38
  outputs = model.generate(**inputs)
39
 
40
  # Decode the outputs
41
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
  return generated_text
43
  except Exception as e:
44
  return f"An error occurred: {str(e)}"