Spaces:
vilarin
/
Running on Zero

vilarin commited on
Commit
4ffe832
1 Parent(s): 264280a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +122 -137
app.py CHANGED
@@ -1,28 +1,20 @@
1
- import subprocess
2
- command = 'pip install git+https://github.com/snekkenull/diffusers.git'
3
- subprocess.run(command, shell=True)
4
-
5
  import os
6
  import gradio as gr
7
  import torch
8
  import numpy as np
9
  import random
10
- from diffusers import StableDiffusion3Pipeline, AutoencoderKL, SD3Transformer2DModel, StableDiffusion3Img2ImgPipeline, FlowMatchEulerDiscreteScheduler
11
- import spaces
12
- from diffusers.utils import load_image
13
- from PIL import Image
14
- import requests
15
- import transformers
16
- from transformers import AutoTokenizer, T5EncoderModel
17
  from translatepy import Translator
18
-
 
 
19
 
20
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
21
  translator = Translator()
22
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
23
  # Constants
24
- model = "stabilityai/stable-diffusion-3-medium"
25
- repo= "stabilityai/stable-diffusion-3-medium-diffusers"
26
  MAX_SEED = np.iinfo(np.int32).max
27
 
28
  CSS = """
@@ -38,143 +30,108 @@ JS = """function () {
38
  }
39
  }"""
40
 
 
 
41
 
42
- vae = AutoencoderKL.from_pretrained(
43
- repo,
44
- subfolder="vae",
45
- torch_dtype=torch.float16,
46
- )
47
-
48
- transformer = SD3Transformer2DModel.from_pretrained(
49
- repo,
50
- subfolder="transformer",
51
- torch_dtype=torch.float16,
52
- )
53
-
54
-
55
- # text_encoder_3 = T5EncoderModel.from_pretrained(
56
- # repo,
57
- # subfolder="text_encoder_3",
58
- # )
59
-
60
- # tokenizer_3 = AutoTokenizer.from_pretrained(
61
- # repo,
62
- # subfolder="tokenizer_3",
63
- # torch_dtype=torch.float16,
64
- # )
65
 
 
 
 
 
 
66
 
67
- # Ensure model and scheduler are initialized in GPU-enabled function
68
- if torch.cuda.is_available():
69
- pipe = StableDiffusion3Pipeline.from_pretrained(
70
- repo,
71
- vae=vae,
72
- transformer=transformer,
73
- torch_dtype=torch.float16).to("cuda")
74
- pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(
75
- repo,
76
- vae=vae,
77
- transformer=transformer,
78
- torch_dtype=torch.float16).to("cuda")
79
 
 
 
 
80
 
 
 
 
 
 
 
81
 
82
- pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
83
- pipe2.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe2.scheduler.config)
 
84
 
85
- print(pipe.tokenizer_max_length)
 
 
 
 
 
 
 
 
86
 
87
- # Function
88
  @spaces.GPU()
89
  def generate_image(
90
- prompt,
91
- negative="low quality",
92
- width=1024,
93
- height=1024,
94
- scales=5,
95
- steps=30,
96
- strength=0.7,
97
- seed: int =-1,
98
- nums=1,
99
- progress=gr.Progress(track_tqdm=True)):
100
 
101
  if seed == -1:
102
  seed = random.randint(0, MAX_SEED)
103
  seed = int(seed)
104
  print(f'prompt:{prompt}')
105
 
106
- text = str(translator.translate(prompt['text'], 'English'))
107
 
108
-
109
- if prompt['files']:
110
- #images = Image.open(prompt['files'][-1]).convert('RGB')
111
- init_image = load_image(prompt['files'][-1]).resize((height, width))
112
- else:
113
- init_image = None
114
  generator = torch.Generator().manual_seed(seed)
115
 
116
 
117
- if init_image:
118
- image = pipe2(
119
- prompt=text,
120
- image=init_image,
121
- negative_prompt=negative,
122
- guidance_scale=scales,
123
- num_inference_steps=steps,
124
- strength=strength,
125
- generator = generator,
126
- num_images_per_prompt = nums,
127
- ).images
128
- else:
129
- image = pipe(
130
- prompt=text,
131
- negative_prompt=negative,
132
- width=width,
133
- height=height,
134
- guidance_scale=scales,
135
- num_inference_steps=steps,
136
- generator = generator,
137
- num_images_per_prompt = nums,
138
- ).images
139
-
140
- print(image)
141
- print(seed)
142
- return image, seed
143
-
144
 
 
 
145
  examples = [
146
- [{"text": "a female character with long, flowing hair that appears to be made of ethereal, swirling patterns resembling the Northern Lights or Aurora Borealis. The background is dominated by deep blues and purples, creating a mysterious and dramatic atmosphere. The character's face is serene, with pale skin and striking features. She wears a dark-colored outfit with subtle patterns. The overall style of the artwork is reminiscent of fantasy or supernatural genres", "files": []}],
147
- [{"text": "Digital art, portrait of an anthropomorphic roaring Tiger warrior with full armor, close up in the middle of a battle, behind him there is a banner with the text \"Open Source\".", "files": []}],
148
- [{"text": "photo of a dog and a cat both standing on a red box, with a blue ball in the middle with a parrot standing on top of the ball. The box has the text \"SD3\"", "files": []}],
149
- [{"text": "selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", "files": []}],
150
- [{"text": "A vibrant street wall covered in colorful graffiti, the centerpiece spells \"SD3 MEDIUM\", in a storm of colors", "files": []}],
151
- [{"text": "photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", "files": []}],
152
- [{"text": "anime art of a steampunk inventor in their workshop, surrounded by gears, gadgets, and steam. He is holding a blue potion and a red potion, one in each hand", "files": []}],
153
- [{"text": "photo of picturesque scene of a road surrounded by lush green trees and shrubs. The road is wide and smooth, leading into the distance. On the right side of the road, there's a blue sports car parked with the license plate spelling \"SD32B\". The sky above is partly cloudy, suggesting a pleasant day. The trees have a mix of green and brown foliage. There are no people visible in the image. The overall composition is balanced, with the car serving as a focal point.", "files": []}],
154
- [{"text": "photo of young man in a black suit, white shirt, and black tie. He has a neatly styled haircut and is looking directly at the camera with a neutral expression. The background consists of a textured wall with horizontal lines. The photograph is in black and white, emphasizing contrasts and shadows. The man appears to be in his late twenties or early thirties, with fair skin and short, dark hair.", "files": []}],
155
- [{"text": "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", "files": []}],
156
  ]
157
 
158
 
159
-
160
  # Gradio Interface
161
 
162
- with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
163
- gr.HTML("<h1><center>SD3M🐉T5</center></h1>")
164
- gr.HTML("<p><center><a href='https://huggingface.co/stabilityai/stable-diffusion-3-medium'>sd3m</a> text/image-to-image generation<br><b>Update</b>: fix diffuser to support 512 token</center></p>")
165
  with gr.Row():
166
  with gr.Column(scale=4):
167
- img = gr.Gallery(label='SD3M Generated Image', columns = 1, preview=True, height=600)
168
- prompt = gr.MultimodalTextbox(label='Enter Your Prompt (Multi-Languages)', interactive=True, placeholder="Enter prompt, add one image.", file_types=['image'])
 
 
169
  with gr.Accordion("Advanced Options", open=True):
170
  with gr.Column(scale=1):
171
- negative = gr.Textbox(label="Negative prompt", value="low quality, ugly, blurry, poor face, bad anatomy")
172
  width = gr.Slider(
173
  label="Width",
174
  minimum=512,
175
  maximum=1280,
176
  step=8,
177
- value=1024,
178
  )
179
  height = gr.Slider(
180
  label="Height",
@@ -188,29 +145,21 @@ with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
188
  minimum=3.5,
189
  maximum=7,
190
  step=0.1,
191
- value=5,
192
  )
193
  steps = gr.Slider(
194
  label="Steps",
195
  minimum=1,
196
- maximum=50,
197
  step=1,
198
- value=30,
199
- )
200
- strength = gr.Slider(
201
- label="Strength",
202
- minimum=0.0,
203
- maximum=1.0,
204
- step=0.1,
205
- value=0.7,
206
  )
207
  seed = gr.Slider(
208
- label="Seed (-1 Random)",
209
  minimum=-1,
210
  maximum=MAX_SEED,
211
  step=1,
212
  value=-1,
213
- scale=2,
214
  )
215
  nums = gr.Slider(
216
  label="Image Numbers",
@@ -218,21 +167,57 @@ with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
218
  maximum=4,
219
  step=1,
220
  value=1,
221
- scale=1,
222
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  gr.Examples(
224
  examples=examples,
225
- inputs=prompt,
226
- outputs=[img, seed],
227
- fn=generate_image,
228
- cache_examples="lazy",
229
  examples_per_page=4,
230
  )
231
 
232
- prompt.submit(fn=generate_image,
233
- inputs=[prompt, negative, width, height, scales, steps, strength, seed, nums],
234
- outputs=[img, seed],
235
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
 
237
 
238
  demo.queue().launch()
 
1
+ import spaces
 
 
 
2
  import os
3
  import gradio as gr
4
  import torch
5
  import numpy as np
6
  import random
7
+ from diffusers import FluxPipeline
 
 
 
 
 
 
8
  from translatepy import Translator
9
+ from huggingface_hub import hf_hub_download
10
+ import requests
11
+ import re
12
 
13
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
14
  translator = Translator()
15
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
16
  # Constants
17
+ model = "black-forest-labs/FLUX.1-dev"
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
 
20
  CSS = """
 
30
  }
31
  }"""
32
 
33
+ if torch.cuda.is_available():
34
+ pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ def scrape_lora_link(url):
38
+ try:
39
+ # Send a GET request to the URL
40
+ response = requests.get(url)
41
+ response.raise_for_status() # Raise an exception for bad status codes
42
 
43
+ # Get the content of the page
44
+ content = response.text
 
 
 
 
 
 
 
 
 
 
45
 
46
+ # Use regular expression to find the link
47
+ pattern = r'href="(.*?lora.*?\.safetensors\?download=true)"'
48
+ match = re.search(pattern, content)
49
 
50
+ if match:
51
+ safetensors_url = match.group(1)
52
+ filename = safetensors_url.split('/')[-1].split('?')[0] # Extract the filename from the URL
53
+ return filename
54
+ else:
55
+ return None
56
 
57
+ except requests.RequestException as e:
58
+ print(f"An error occurred while fetching the URL: {e}")
59
+ return None
60
 
61
+ def enable_lora(lora_scale,lora_add):
62
+ if not lora_add:
63
+ gradio.Info("No Lora Loaded, Use basemodel", duration=5)
64
+ else:
65
+ url = f'https://huggingface.co/{lora_add}/tree/main'
66
+ lora_name = scrape_lora_link(url)
67
+ pipe.load_lora_weights(lora_add, weight_name=lora_name)
68
+ pipe.fuse_lora(lora_scale=lora_scale)
69
+ gradio.Info(f"{lora_add} Loaded", duration=5)
70
 
 
71
  @spaces.GPU()
72
  def generate_image(
73
+ prompt:str,
74
+ lora_word:str,
75
+ width:int=768,
76
+ height:int=1024,
77
+ scales:float=3.5,
78
+ steps:int=24,
79
+ seed:int=-1,
80
+ nums:int=1):
81
+
82
+ pipe.to(device="cuda")
83
 
84
  if seed == -1:
85
  seed = random.randint(0, MAX_SEED)
86
  seed = int(seed)
87
  print(f'prompt:{prompt}')
88
 
89
+ text = str(translator.translate(prompt, 'English')) + "," + lora_word
90
 
 
 
 
 
 
 
91
  generator = torch.Generator().manual_seed(seed)
92
 
93
 
94
+ image = pipe(
95
+ prompt=text,
96
+ height=height,
97
+ width=width,
98
+ guidance_scale=scales,
99
+ output_type="pil",
100
+ num_inference_steps=steps,
101
+ max_sequence_length=512,
102
+ num_images_per_prompt=nums,
103
+ generator=generator,
104
+ ).images
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
+ return image, seed
107
+
108
  examples = [
109
+ ["close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck. The garment,hugging the skin with subtle luxury,complements the Caucasian model's understated makeup,embodying minimalist elegance. Behind,a pale gray backdrop extends,its fine texture shimmering subtly in the dim light,artfully balancing the composition and focusing attention on the subject. In a palette of black,gray,and skin tones,simplicity intertwines with profundity,as every detail whispers untold stories.",0.9,"Shakker-Labs/AWPortrait-FL",""],
110
+ ["Caucasian,The image features a young woman of European descent standing in an studio setting,surrounded by silk. (She is wearing a silk dress),paired with a bold. Her brown hair is wet and tousled,falling naturally around her face,giving her a raw and edgy look. The woman has an intense and direct gaze,adding to the dramatic feel of the image. The backdrop is flowing silk,big silk. The overall composition blends elements of fashion and nature,creating a striking and powerful visual",0.9,"Shakker-Labs/AWPortrait-FL".""],
111
+ ["A black and white portrait of a young woman with a captivating gaze. She's bundled up in a cozy black sweater,hands gently cupped near her face. The monochromatic tones highlight her delicate features and the contemplative mood of the image",0.9,"Shakker-Labs/AWPortrait-FL",""],
112
+ ["Fashion photography portrait,close up portrait,(a woman of European descent is surrounded by lava rock and magma from head to neck, red magma hair, wear volcanic lava rock magma outfit coat lava rock magma fashion costume with ruffled layers",0.9,"Shakker-Labs/AWPortrait-FL",""]
 
 
 
 
 
 
113
  ]
114
 
115
 
 
116
  # Gradio Interface
117
 
118
+ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
119
+ gr.HTML("<h1><center>Flux Labs</center></h1>")
120
+ gr.HTML("<p><center>Choose the LoRA model on the right menu</center></p>")
121
  with gr.Row():
122
  with gr.Column(scale=4):
123
+ img = gr.Gallery(label='flux Generated Image', columns = 1, preview=True, height=600)
124
+ with gr.Row():
125
+ prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
126
+ sendBtn = gr.Button(scale=1, variant='primary')
127
  with gr.Accordion("Advanced Options", open=True):
128
  with gr.Column(scale=1):
 
129
  width = gr.Slider(
130
  label="Width",
131
  minimum=512,
132
  maximum=1280,
133
  step=8,
134
+ value=768,
135
  )
136
  height = gr.Slider(
137
  label="Height",
 
145
  minimum=3.5,
146
  maximum=7,
147
  step=0.1,
148
+ value=3.5,
149
  )
150
  steps = gr.Slider(
151
  label="Steps",
152
  minimum=1,
153
+ maximum=100,
154
  step=1,
155
+ value=24,
 
 
 
 
 
 
 
156
  )
157
  seed = gr.Slider(
158
+ label="Seeds",
159
  minimum=-1,
160
  maximum=MAX_SEED,
161
  step=1,
162
  value=-1,
 
163
  )
164
  nums = gr.Slider(
165
  label="Image Numbers",
 
167
  maximum=4,
168
  step=1,
169
  value=1,
170
+ )
171
+ lora_scale = gr.Slider(
172
+ label="LoRA Scale",
173
+ minimum=0.1,
174
+ maximum=1.0,
175
+ step=0.1,
176
+ value=1.0,
177
+ )
178
+ lora_add = gr.Textbox(
179
+ label="Add Flux LoRA",
180
+ info="Copy the HF LoRA model name here",
181
+ lines=1,
182
+ value="Shakker-Labs/AWPortrait-FL",
183
+ )
184
+ lora_word = gr.Textbox(
185
+ label="Add Flux LoRA Trigger Word",
186
+ info="Add the Trigger Word",
187
+ lines=1,
188
+ value="",
189
+ )
190
+ load_lora = gr.Button(value="Load LoRA", variant='secondary')
191
+
192
  gr.Examples(
193
  examples=examples,
194
+ inputs=[prompt,lora_scale,lora_add,lora_word],
195
+ cache_examples=False,
 
 
196
  examples_per_page=4,
197
  )
198
 
199
+ load_lora.click(fn=enable_lora, inputs=[lora_scale,lora_add])
200
+
201
+ gr.on(
202
+ triggers=[
203
+ prompt.submit,
204
+ sendBtn.click,
205
+ ],
206
+ fn=generate_image,
207
+ inputs=[
208
+ prompt,
209
+ lora_word,
210
+ width,
211
+ height,
212
+ scales,
213
+ steps,
214
+ seed,
215
+ nums
216
+ ],
217
+ outputs=[img, seed],
218
+ api_name="run",
219
+ )
220
+
221
 
222
 
223
  demo.queue().launch()