vibhorag101 commited on
Commit
bf3ca0c
1 Parent(s): f823eaa

minor changes

Browse files
Files changed (2) hide show
  1. app.py +3 -8
  2. indicators.py +1 -3
app.py CHANGED
@@ -1,16 +1,11 @@
1
  import locale
 
2
  import gradio as gr
3
- import matplotlib.pyplot as plt
4
- import numpy as np
5
- import numpy_financial as npf
6
  import pandas as pd
7
- import plotly.graph_objects as go
8
- import seaborn as sns
9
- from pandas.tseries.offsets import DateOffset, MonthEnd
10
- from scipy import optimize
11
 
12
  from portfolio import calculate_portfolio_returns
13
- from utils import get_all_mf_schemes_df,get_mf_scheme_data
14
 
15
  js_func = """
16
  function refresh() {
 
1
  import locale
2
+
3
  import gradio as gr
 
 
 
4
  import pandas as pd
5
+ from pandas.tseries.offsets import DateOffset
 
 
 
6
 
7
  from portfolio import calculate_portfolio_returns
8
+ from utils import get_all_mf_schemes_df, get_mf_scheme_data
9
 
10
  js_func = """
11
  function refresh() {
indicators.py CHANGED
@@ -20,10 +20,8 @@ def get_investment_sharpe_ratio(investment_df, start_date, end_date, SIP_date,ri
20
  # calculate annualized standard deviation of monthly returns
21
  annualized_sd = return_df['monthly_return'].std()*np.sqrt(12)
22
  monthly_mean_return = return_df['monthly_return'].mean()
23
- print(monthly_mean_return)
24
  annualized_return = ((1+monthly_mean_return/100)**12 - 1)*100
25
- print(annualized_return)
26
-
27
  # calculate Sharpe Ratio
28
  return ((annualized_return - risk_free_rate) / annualized_sd)
29
 
 
20
  # calculate annualized standard deviation of monthly returns
21
  annualized_sd = return_df['monthly_return'].std()*np.sqrt(12)
22
  monthly_mean_return = return_df['monthly_return'].mean()
23
+ # calculate annualized return, as the risk free rate is annualized
24
  annualized_return = ((1+monthly_mean_return/100)**12 - 1)*100
 
 
25
  # calculate Sharpe Ratio
26
  return ((annualized_return - risk_free_rate) / annualized_sd)
27