#!/usr/bin/env python3 import torch from PIL import Image import numpy as np from typing import cast import pprint from pathlib import Path import base64 from io import BytesIO from typing import Union, Tuple import matplotlib import re from colpali_engine.models import ColPali, ColPaliProcessor from colpali_engine.utils.torch_utils import get_torch_device from einops import rearrange from vidore_benchmark.interpretability.plot_utils import plot_similarity_heatmap from vidore_benchmark.interpretability.torch_utils import ( normalize_similarity_map_per_query_token, ) from vidore_benchmark.interpretability.vit_configs import VIT_CONFIG from vidore_benchmark.utils.image_utils import scale_image from vespa.application import Vespa from vespa.io import VespaQueryResponse matplotlib.use("Agg") MAX_QUERY_TERMS = 64 # OUTPUT_DIR = Path(__file__).parent.parent / "output" / "sim_maps" # OUTPUT_DIR.mkdir(exist_ok=True) COLPALI_GEMMA_MODEL_ID = "vidore--colpaligemma-3b-pt-448-base" COLPALI_GEMMA_MODEL_SNAPSHOT = "12c59eb7e23bc4c26876f7be7c17760d5d3a1ffa" COLPALI_GEMMA_MODEL_PATH = ( Path().home() / f".cache/huggingface/hub/models--{COLPALI_GEMMA_MODEL_ID}/snapshots/{COLPALI_GEMMA_MODEL_SNAPSHOT}" ) COLPALI_MODEL_ID = "vidore--colpali-v1.2" COLPALI_MODEL_SNAPSHOT = "9912ce6f8a462d8cf2269f5606eabbd2784e764f" COLPALI_MODEL_PATH = ( Path().home() / f".cache/huggingface/hub/models--{COLPALI_MODEL_ID}/snapshots/{COLPALI_MODEL_SNAPSHOT}" ) COLPALI_GEMMA_MODEL_NAME = COLPALI_GEMMA_MODEL_ID.replace("--", "/") def load_model() -> Tuple[ColPali, ColPaliProcessor]: model_name = "vidore/colpali-v1.2" device = get_torch_device("auto") print(f"Using device: {device}") # Load the model model = cast( ColPali, ColPali.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, device_map=device, ), ).eval() # Load the processor processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name)) return model, processor def load_vit_config(model): # Load the ViT config print(f"VIT config: {VIT_CONFIG}") vit_config = VIT_CONFIG[COLPALI_GEMMA_MODEL_NAME] return vit_config # Create dummy image dummy_image = Image.new("RGB", (448, 448), (255, 255, 255)) def gen_similarity_map( model, processor, device, vit_config, query, image: Union[Path, str] ): # Should take in the b64 image from Vespa query result # And possibly the tensor representing the output_image if isinstance(image, Path): # image is a file path try: image = Image.open(image) except Exception as e: raise ValueError(f"Failed to open image from path: {e}") elif isinstance(image, str): # image is b64 string try: image = Image.open(BytesIO(base64.b64decode(image))) except Exception as e: raise ValueError(f"Failed to open image from b64: {e}") # Preview the image scale_image(image, 512) # Preprocess inputs input_text_processed = processor.process_queries([query]).to(device) input_image_processed = processor.process_images([image]).to(device) # Forward passes with torch.no_grad(): output_text = model.forward(**input_text_processed) output_image = model.forward(**input_image_processed) # output_image is the tensor that we could get from the Vespa query # Print shape of output_text and output_image # Output image shape: torch.Size([1, 1030, 128]) # Remove the special tokens from the output output_image = output_image[ :, : processor.image_seq_length, : ] # (1, n_patches_x * n_patches_y, dim) # Rearrange the output image tensor to explicitly represent the 2D grid of patches output_image = rearrange( output_image, "b (h w) c -> b h w c", h=vit_config.n_patch_per_dim, w=vit_config.n_patch_per_dim, ) # (1, n_patches_x, n_patches_y, dim) # Get the similarity map similarity_map = torch.einsum( "bnk,bijk->bnij", output_text, output_image ) # (1, query_tokens, n_patches_x, n_patches_y) # Normalize the similarity map similarity_map_normalized = normalize_similarity_map_per_query_token( similarity_map ) # (1, query_tokens, n_patches_x, n_patches_y) # Use this cell output to choose a token using its index query_tokens = processor.tokenizer.tokenize( processor.decode(input_text_processed.input_ids[0]) ) # Choose a token token_idx = ( 10 # e.g. if "12: '▁Kazakhstan',", set 12 to choose the token 'Kazakhstan' ) selected_token = processor.decode(input_text_processed.input_ids[0, token_idx]) # strip whitespace selected_token = selected_token.strip() print(f"Selected token: `{selected_token}`") # Retrieve the similarity map for the chosen token pprint.pprint({idx: val for idx, val in enumerate(query_tokens)}) # Resize the image to square input_image_square = image.resize((vit_config.resolution, vit_config.resolution)) # Plot the similarity map fig, ax = plot_similarity_heatmap( input_image_square, patch_size=vit_config.patch_size, image_resolution=vit_config.resolution, similarity_map=similarity_map_normalized[0, token_idx, :, :], ) ax = annotate_plot(ax, selected_token) return fig, ax # def save_figure(fig, filename: str = "similarity_map.png"): # fig.savefig( # OUTPUT_DIR / filename, # bbox_inches="tight", # pad_inches=0, # ) def annotate_plot(ax, query, selected_token): # Add the query text ax.set_title(query, fontsize=18) # Add annotation with selected token ax.annotate( f"Selected token:`{selected_token}`", xy=(0.5, 0.95), xycoords="axes fraction", ha="center", va="center", fontsize=18, color="black", bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1), ) return ax def gen_similarity_map_new( processor: ColPaliProcessor, model: ColPali, device, vit_config, query: str, query_embs: torch.Tensor, token_idx_map: dict, token_to_show: str, image: Union[Path, str], ): if isinstance(image, Path): # image is a file path try: image = Image.open(image) except Exception as e: raise ValueError(f"Failed to open image from path: {e}") elif isinstance(image, str): # image is b64 string try: image = Image.open(BytesIO(base64.b64decode(image))) except Exception as e: raise ValueError(f"Failed to open image from b64: {e}") token_idx = token_idx_map[token_to_show] print(f"Selected token: `{token_to_show}`") # strip whitespace # Preview the image # scale_image(image, 512) # Preprocess inputs input_image_processed = processor.process_images([image]).to(device) # Forward passes with torch.no_grad(): output_image = model.forward(**input_image_processed) # output_image is the tensor that we could get from the Vespa query # Print shape of output_text and output_image # Output image shape: torch.Size([1, 1030, 128]) # Remove the special tokens from the output print(f"Output image shape before dim: {output_image.shape}") output_image = output_image[ :, : processor.image_seq_length, : ] # (1, n_patches_x * n_patches_y, dim) print(f"Output image shape after dim: {output_image.shape}") # Rearrange the output image tensor to explicitly represent the 2D grid of patches output_image = rearrange( output_image, "b (h w) c -> b h w c", h=vit_config.n_patch_per_dim, w=vit_config.n_patch_per_dim, ) # (1, n_patches_x, n_patches_y, dim) # Get the similarity map print(f"Query embs shape: {query_embs.shape}") # Add 1 extra dim to start of query_embs query_embs = query_embs.unsqueeze(0).to(device) print(f"Output image shape: {output_image.shape}") similarity_map = torch.einsum( "bnk,bijk->bnij", query_embs, output_image ) # (1, query_tokens, n_patches_x, n_patches_y) print(f"Similarity map shape: {similarity_map.shape}") # Normalize the similarity map similarity_map_normalized = normalize_similarity_map_per_query_token( similarity_map ) # (1, query_tokens, n_patches_x, n_patches_y) print(f"Similarity map normalized shape: {similarity_map_normalized.shape}") # Use this cell output to choose a token using its index input_image_square = image.resize((vit_config.resolution, vit_config.resolution)) # Plot the similarity map fig, ax = plot_similarity_heatmap( input_image_square, patch_size=vit_config.patch_size, image_resolution=vit_config.resolution, similarity_map=similarity_map_normalized[0, token_idx, :, :], ) ax = annotate_plot(ax, query, token_to_show) # save the figure # save_figure(fig, f"similarity_map_{token_to_show}.png") return fig, ax def get_query_embeddings_and_token_map( processor, model, query, image ) -> Tuple[torch.Tensor, dict]: inputs = processor.process_queries([query]).to(model.device) with torch.no_grad(): embeddings_query = model(**inputs) q_emb = embeddings_query.to("cpu")[0] # Extract the single embedding # Use this cell output to choose a token using its index query_tokens = processor.tokenizer.tokenize(processor.decode(inputs.input_ids[0])) # reverse key, values in dictionary print(query_tokens) token_to_idx = {val: idx for idx, val in enumerate(query_tokens)} return q_emb, token_to_idx def format_query_results(query, response, hits=5) -> dict: query_time = response.json.get("timing", {}).get("searchtime", -1) query_time = round(query_time, 2) count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0) result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n" print(result_text) return response.json async def query_vespa_default( app: Vespa, query: str, q_emb: torch.Tensor, hits: int = 3, timeout: str = "10s", **kwargs, ) -> dict: async with app.asyncio(connections=1, total_timeout=120) as session: query_embedding = format_q_embs(q_emb) response: VespaQueryResponse = await session.query( body={ "yql": "select id,title,url,image,page_number,text from pdf_page where userQuery();", "ranking": "default", "query": query, "timeout": timeout, "hits": hits, "input.query(qt)": query_embedding, "presentation.timing": True, **kwargs, }, ) assert response.is_successful(), response.json return format_query_results(query, response) def float_to_binary_embedding(float_query_embedding: dict) -> dict: binary_query_embeddings = {} for k, v in float_query_embedding.items(): binary_vector = ( np.packbits(np.where(np.array(v) > 0, 1, 0)).astype(np.int8).tolist() ) binary_query_embeddings[k] = binary_vector if len(binary_query_embeddings) >= MAX_QUERY_TERMS: print(f"Warning: Query has more than {MAX_QUERY_TERMS} terms. Truncating.") break return binary_query_embeddings def create_nn_query_strings( binary_query_embeddings: dict, target_hits_per_query_tensor: int = 20 ) -> Tuple[str, dict]: # Query tensors for nearest neighbor calculations nn_query_dict = {} for i in range(len(binary_query_embeddings)): nn_query_dict[f"input.query(rq{i})"] = binary_query_embeddings[i] nn = " OR ".join( [ f"({{targetHits:{target_hits_per_query_tensor}}}nearestNeighbor(embedding,rq{i}))" for i in range(len(binary_query_embeddings)) ] ) return nn, nn_query_dict def format_q_embs(q_embs: torch.Tensor) -> dict: float_query_embedding = {k: v.tolist() for k, v in enumerate(q_embs)} return float_query_embedding async def query_vespa_nearest_neighbor( app: Vespa, query: str, q_emb: torch.Tensor, target_hits_per_query_tensor: int = 20, hits: int = 3, timeout: str = "10s", **kwargs, ) -> dict: # Hyperparameter for speed vs. accuracy async with app.asyncio(connections=1, total_timeout=180) as session: float_query_embedding = format_q_embs(q_emb) binary_query_embeddings = float_to_binary_embedding(float_query_embedding) # Mixed tensors for MaxSim calculations query_tensors = { "input.query(qtb)": binary_query_embeddings, "input.query(qt)": float_query_embedding, } nn_string, nn_query_dict = create_nn_query_strings( binary_query_embeddings, target_hits_per_query_tensor ) query_tensors.update(nn_query_dict) response: VespaQueryResponse = await session.query( body={ **query_tensors, "presentation.timing": True, "yql": f"select id,title,text,url,image,page_number from pdf_page where {nn_string}", "ranking.profile": "retrieval-and-rerank", "timeout": timeout, "hits": hits, **kwargs, }, ) assert response.is_successful(), response.json return format_query_results(query, response) def is_special_token(token: str) -> bool: # Pattern for tokens that start with '<', numbers, whitespace, or single characters pattern = re.compile(r"^<.*$|^\d+$|^\s+$|^.$") if pattern.match(token): return True return False async def get_result_from_query( app: Vespa, processor: ColPaliProcessor, model: ColPali, query: str, nn=False, gen_sim_map=False, ): # Get the query embeddings and token map print(query) q_embs, token_to_idx = get_query_embeddings_and_token_map( processor, model, query, dummy_image ) print(token_to_idx) # Use the token map to choose a token randomly for now # Dynamically select a token containing 'water' if nn: result = await query_vespa_nearest_neighbor(app, query, q_embs) else: result = await query_vespa_default(app, query, q_embs) # Print score, title id and text of the results for idx, child in enumerate(result["root"]["children"]): print( f"Result {idx+1}: {child['relevance']}, {child['fields']['title']}, {child['fields']['id']}" ) if gen_sim_map: for single_result in result["root"]["children"]: img = single_result["fields"]["image"] for token in token_to_idx: if is_special_token(token): print(f"Skipping special token: {token}") continue fig, ax = gen_similarity_map_new( processor, model, model.device, load_vit_config(model), query, q_embs, token_to_idx, token, img, ) sim_map = base64.b64encode(fig.canvas.tostring_rgb()).decode("utf-8") single_result["fields"][f"sim_map_{token}"] = sim_map return result def get_result_dummy(query: str, nn: bool = False): result = {} result["timing"] = {} result["timing"]["querytime"] = 0.23700000000000002 result["timing"]["summaryfetchtime"] = 0.001 result["timing"]["searchtime"] = 0.23900000000000002 result["root"] = {} result["root"]["id"] = "toplevel" result["root"]["relevance"] = 1 result["root"]["fields"] = {} result["root"]["fields"]["totalCount"] = 59 result["root"]["coverage"] = {} result["root"]["coverage"]["coverage"] = 100 result["root"]["coverage"]["documents"] = 155 result["root"]["coverage"]["full"] = True result["root"]["coverage"]["nodes"] = 1 result["root"]["coverage"]["results"] = 1 result["root"]["coverage"]["resultsFull"] = 1 result["root"]["children"] = [] elt0 = {} elt0["id"] = "index:colpalidemo_content/0/424c85e7dece761d226f060f" elt0["relevance"] = 2354.050122871995 elt0["source"] = "colpalidemo_content" elt0["fields"] = {} elt0["fields"]["id"] = "a767cb1868be9a776cd56b768347b089" elt0["fields"]["url"] = ( "https://static.conocophillips.com/files/resources/conocophillips-2023-sustainability-report.pdf" ) elt0["fields"]["title"] = "ConocoPhillips 2023 Sustainability Report" elt0["fields"]["page_number"] = 50 elt0["fields"]["image"] = "empty for now - is base64 encoded image" result["root"]["children"].append(elt0) elt1 = {} elt1["id"] = "index:colpalidemo_content/0/b927c4979f0beaf0d7fab8e9" elt1["relevance"] = 2313.7529950886965 elt1["source"] = "colpalidemo_content" elt1["fields"] = {} elt1["fields"]["id"] = "9f2fc0aa02c9561adfaa1451c875658f" elt1["fields"]["url"] = ( "https://static.conocophillips.com/files/resources/conocophillips-2023-managing-climate-related-risks.pdf" ) elt1["fields"]["title"] = "ConocoPhillips Managing Climate Related Risks" elt1["fields"]["page_number"] = 44 elt1["fields"]["image"] = "empty for now - is base64 encoded image" result["root"]["children"].append(elt1) elt2 = {} elt2["id"] = "index:colpalidemo_content/0/9632d72238829d6afefba6c9" elt2["relevance"] = 2312.230182081461 elt2["source"] = "colpalidemo_content" elt2["fields"] = {} elt2["fields"]["id"] = "d638ded1ddcb446268b289b3f65430fd" elt2["fields"]["url"] = ( "https://static.conocophillips.com/files/resources/24-0976-sustainability-highlights_nature.pdf" ) elt2["fields"]["title"] = ( "ConocoPhillips Sustainability Highlights - Nature (24-0976)" ) elt2["fields"]["page_number"] = 0 elt2["fields"]["image"] = "empty for now - is base64 encoded image" result["root"]["children"].append(elt2) return result if __name__ == "__main__": model, processor = load_model() vit_config = load_vit_config(model) query = "How many percent of source water is fresh water?" image_filepath = ( Path(__file__).parent.parent / "static" / "assets" / "ConocoPhillips Sustainability Highlights - Nature (24-0976).png" ) gen_similarity_map( model, processor, model.device, vit_config, query=query, image=image_filepath ) result = get_result_dummy("dummy query") print(result) print("Done")