ofermend commited on
Commit
b5e0c7e
β€’
1 Parent(s): aba1e8e
Files changed (6) hide show
  1. Dockerfile +27 -0
  2. README.md +6 -5
  3. Vectara-logo.png +0 -0
  4. app.py +178 -0
  5. requirements.txt +10 -0
  6. vectara-agent-cache.sqlite +0 -0
Dockerfile ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10
2
+
3
+ WORKDIR /app
4
+
5
+ COPY ./requirements.txt /app/requirements.txt
6
+
7
+ RUN if [ -z "$GITHUB_TOKEN" ]; then echo "GITHUB_TOKEN is not set"; exit 1; fi && \
8
+ sed -i "s/{GITHUB_TOKEN}/$GITHUB_TOKEN/g" /app/requirements.txt
9
+ RUN pip3 install --no-cache-dir -r /app/requirements.txt
10
+
11
+ # User
12
+ RUN useradd -m -u 1000 user
13
+ USER user
14
+ ENV HOME /home/user
15
+ ENV PATH $HOME/.local/bin:$PATH
16
+
17
+ WORKDIR $HOME
18
+ RUN mkdir app
19
+ WORKDIR $HOME/app
20
+ COPY . $HOME/app
21
+
22
+ EXPOSE 8501
23
+ CMD streamlit run app.py \
24
+ --server.headless true \
25
+ --server.enableCORS false \
26
+ --server.enableXsrfProtection false \
27
+ --server.fileWatcherType none
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- title: Finance Chat With Vectara Agent
3
- emoji: πŸ‘
4
- colorFrom: yellow
5
- colorTo: purple
6
  sdk: streamlit
7
- sdk_version: 1.35.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Finance Chatbot
3
+ emoji: 🐨
4
+ colorFrom: indigo
5
+ colorTo: indigo
6
  sdk: streamlit
7
+ sdk_version: 1.32.2
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: An AI assistant with company financial reports
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Vectara-logo.png ADDED
app.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from omegaconf import OmegaConf
3
+ import streamlit as st
4
+ import os
5
+ from PIL import Image
6
+ import re
7
+ import sys
8
+
9
+ from pydantic import Field, BaseModel
10
+ from vectara_agent.agent import Agent, AgentType, AgentStatusType
11
+ from vectara_agent.tools import ToolsFactory
12
+
13
+
14
+ tickers = {
15
+ "AAPL": "Apple Computer",
16
+ "GOOG": "Google",
17
+ "AMZN": "Amazon",
18
+ "SNOW": "Snowflake",
19
+ "TEAM": "Atlassian",
20
+ "TSLA": "Tesla",
21
+ "NVDA": "Nvidia",
22
+ "MSFT": "Microsoft",
23
+ "AMD": "Advanced Micro Devices",
24
+ }
25
+ years = [2020, 2021, 2022, 2023, 2024]
26
+ initial_prompt = "How can I help you today?"
27
+
28
+ def create_tools(cfg):
29
+
30
+ def get_company_info() -> list[str]:
31
+ """
32
+ Returns a dictionary of companies you can query about their financial reports.
33
+ The output is a dictionary of valid ticker symbols mapped to company names.
34
+ You can use this to identify the companies you can query about, and their ticker information.
35
+ """
36
+ return tickers
37
+
38
+ def get_valid_years() -> list[str]:
39
+ """
40
+ Returns a list of the years for which financial reports are available.
41
+ """
42
+ return years
43
+
44
+ class QueryFinancialReportsArgs(BaseModel):
45
+ query: str = Field(..., description="The user query. Must be a question about the company's financials, and should not include the company name, ticker or year.")
46
+ year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.")
47
+ ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
48
+
49
+ tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
50
+ vectara_customer_id=cfg.customer_id,
51
+ vectara_corpus_id=cfg.corpus_id)
52
+ query_financial_reports = tools_factory.create_rag_tool(
53
+ tool_name = "query_financial_reports",
54
+ tool_description = """
55
+ Given a company name and year,
56
+ returns a response (str) to a user query about the company's financials for that year.
57
+ When using this tool, make sure to provide the a valid company ticker and a year.
58
+ Use this tool to get financial information one metric at a time.
59
+ """,
60
+ tool_args_schema = QueryFinancialReportsArgs,
61
+ tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'",
62
+ reranker = "slingshot", rerank_k = 100,
63
+ n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.0,
64
+ summary_num_results = 15,
65
+ vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
66
+ )
67
+
68
+ return (tools_factory.get_tools(
69
+ [
70
+ get_company_info,
71
+ get_valid_years,
72
+ ]
73
+ ) +
74
+ tools_factory.standard_tools() +
75
+ tools_factory.financial_tools() +
76
+ [query_financial_reports]
77
+ )
78
+
79
+ def launch_bot(agent_type: AgentType):
80
+ def reset():
81
+ cfg = st.session_state.cfg
82
+ st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
83
+ st.session_state.thinking_message = "Agent at work..."
84
+
85
+ # Create the agent
86
+ print("Creating agent...")
87
+
88
+ def update_func(status_type: AgentStatusType, msg: str):
89
+ output = f"{status_type.value} - {msg}"
90
+ st.session_state.thinking_placeholder.text(output)
91
+
92
+ financial_bot_instructions = """
93
+ - You are a helpful financial assistant in conversation with a user. Use your financial expertise when crafting a query to the tool, to ensure you get the most accurate information.
94
+ - You can answer questions, provide insights, or summarize any information from financial reports.
95
+ - A user may refer to a company's ticker instead of its full name - consider those the same when a user is asking about a company.
96
+ - When calculating a financial metric, make sure you have all the information from tools to complete the calculation.
97
+ - In many cases you may need to query tools on each sub-metric separately before computing the final metric.
98
+ - When using a tool to obtain financial data, consider the fact that information for a certain year may be reported in the the following year's report.
99
+ - Report financial data in a consistent manner. For example if you report revenue in thousands, always report revenue in thousands.
100
+ """
101
+
102
+ st.session_state.agent = Agent(
103
+ agent_type = agent_type,
104
+ tools = create_tools(cfg),
105
+ topic = "10-K financial reports",
106
+ custom_instructions = financial_bot_instructions,
107
+ update_func = update_func
108
+ )
109
+
110
+ if 'cfg' not in st.session_state:
111
+ cfg = OmegaConf.create({
112
+ 'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
113
+ 'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
114
+ 'api_key': str(os.environ['VECTARA_API_KEY']),
115
+ })
116
+ st.session_state.cfg = cfg
117
+ reset()
118
+
119
+ cfg = st.session_state.cfg
120
+ st.set_page_config(page_title="Financial Assistant", layout="wide")
121
+
122
+ # left side content
123
+ with st.sidebar:
124
+ image = Image.open('Vectara-logo.png')
125
+ st.image(image, width=250)
126
+ st.markdown("## Welcome to the financial assistant demo.\n\n\n")
127
+ companies = ", ".join(tickers.values())
128
+ st.markdown(
129
+ f"This assistant can help you with any questions about the financials of the following companies:\n\n **{companies}**.\n\n"
130
+ "You can ask questions, analyze data, provide insights, or summarize any information from financial reports."
131
+ )
132
+
133
+ st.markdown("\n\n")
134
+ if st.button('Start Over'):
135
+ reset()
136
+
137
+ st.markdown("---")
138
+ st.markdown(
139
+ "## How this works?\n"
140
+ "This app was built with [Vectara](https://vectara.com).\n\n"
141
+ "It demonstrates the use of Agentic Chat functionality with Vectara"
142
+ )
143
+ st.markdown("---")
144
+
145
+
146
+ if "messages" not in st.session_state.keys():
147
+ reset()
148
+
149
+ # Display chat messages
150
+ for message in st.session_state.messages:
151
+ with st.chat_message(message["role"], avatar=message["avatar"]):
152
+ st.write(message["content"])
153
+
154
+ # User-provided prompt
155
+ if prompt := st.chat_input():
156
+ st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
157
+ with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
158
+ print(f"Starting new question: {prompt}\n")
159
+ st.write(prompt)
160
+
161
+ # Generate a new response if last message is not from assistant
162
+ if st.session_state.messages[-1]["role"] != "assistant":
163
+ with st.chat_message("assistant", avatar='πŸ€–'):
164
+ with st.spinner(st.session_state.thinking_message):
165
+ st.session_state.thinking_placeholder = st.empty()
166
+ res = st.session_state.agent.chat(prompt)
167
+ cleaned = re.sub(r'\[\d+\]', '', res.response).replace('$', '\\$')
168
+ st.write(cleaned)
169
+ message = {"role": "assistant", "content": cleaned, "avatar": 'πŸ€–'}
170
+ st.session_state.messages.append(message)
171
+ st.session_state.thinking_placeholder.empty()
172
+
173
+ sys.stdout.flush()
174
+
175
+ if __name__ == "__main__":
176
+ print("Starting up...")
177
+ launch_bot(agent_type = AgentType.REACT)
178
+
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ requests_to_curl==1.1.0
2
+ toml==0.10.2
3
+ omegaconf==2.3.0
4
+ syrupy==4.0.8
5
+ streamlit==1.32.2
6
+ llama-index==0.10.42
7
+ llama-index-indices-managed-vectara==0.1.4
8
+ llama-index-agent-openai==0.1.5
9
+ pydantic==1.10.15
10
+ git+https://{GITHUB_TOKEN}@github.com/vectara/vectara-agent.git
vectara-agent-cache.sqlite ADDED
Binary file (24.6 kB). View file