Spaces:
Running
Running
version bump
Browse files
agent.py
CHANGED
@@ -167,30 +167,23 @@ def create_assistant_tools(cfg):
|
|
167 |
|
168 |
class QueryCaselawArgs(BaseModel):
|
169 |
query: str = Field(..., description="The user query.")
|
170 |
-
citations: Optional[str] = Field(default = None,
|
171 |
-
description = "The citations of the case. Optional.",
|
172 |
-
examples = ['253 P.2d 136', '10 Alaska 11', '6 C.M.A. 3'])
|
173 |
|
174 |
vec_factory = VectaraToolFactory(vectara_api_key=cfg.api_key,
|
175 |
vectara_customer_id=cfg.customer_id,
|
176 |
vectara_corpus_id=cfg.corpus_id)
|
177 |
-
|
178 |
-
|
179 |
ask_caselaw = vec_factory.create_rag_tool(
|
180 |
tool_name = "ask_caselaw",
|
181 |
-
tool_description = ""
|
182 |
-
Use this tool for general case law queries.
|
183 |
-
Returns a response (str) to the user query base on case law in the state of Alaska.
|
184 |
-
If 'citations' is provided, filters the response based on information from that case.
|
185 |
-
""",
|
186 |
tool_args_schema = QueryCaselawArgs,
|
187 |
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
188 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
189 |
summary_num_results = 10,
|
190 |
-
vectara_summarizer =
|
191 |
include_citations = False,
|
192 |
)
|
193 |
|
|
|
194 |
return (
|
195 |
[ask_caselaw] +
|
196 |
[tools_factory.create_tool(tool) for tool in [
|
@@ -207,6 +200,7 @@ def get_agent_config() -> OmegaConf:
|
|
207 |
cfg = OmegaConf.create({
|
208 |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
209 |
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
|
|
210 |
'api_key': str(os.environ['VECTARA_API_KEY']),
|
211 |
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
212 |
'demo_name': "legal-agent",
|
@@ -227,7 +221,7 @@ def initialize_agent(_cfg, update_func=None):
|
|
227 |
For example you can include citations, decision date, or case name.
|
228 |
- Citations include 3 components: volume number, reporter, and first page.
|
229 |
Here are some examples: '253 P.2d 136', '10 Alaska 11', '6 C.M.A. 3'
|
230 |
-
|
231 |
- If two cases have conflicting rulings, assume that the case with the more current ruling date is correct.
|
232 |
- If the response is based on cases that are older than 5 years, make sure to inform the user that the information may be outdated,
|
233 |
since some case opinions may no longer apply in law.
|
@@ -248,6 +242,6 @@ def initialize_agent(_cfg, update_func=None):
|
|
248 |
tools=create_assistant_tools(_cfg),
|
249 |
topic="Case law in Alaska",
|
250 |
custom_instructions=legal_assistant_instructions,
|
251 |
-
update_func=update_func
|
252 |
)
|
253 |
return agent
|
|
|
167 |
|
168 |
class QueryCaselawArgs(BaseModel):
|
169 |
query: str = Field(..., description="The user query.")
|
|
|
|
|
|
|
170 |
|
171 |
vec_factory = VectaraToolFactory(vectara_api_key=cfg.api_key,
|
172 |
vectara_customer_id=cfg.customer_id,
|
173 |
vectara_corpus_id=cfg.corpus_id)
|
174 |
+
summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
|
|
|
175 |
ask_caselaw = vec_factory.create_rag_tool(
|
176 |
tool_name = "ask_caselaw",
|
177 |
+
tool_description = "A tool for asking questions about case law in Alaska.",
|
|
|
|
|
|
|
|
|
178 |
tool_args_schema = QueryCaselawArgs,
|
179 |
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
180 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
181 |
summary_num_results = 10,
|
182 |
+
vectara_summarizer = summarizer,
|
183 |
include_citations = False,
|
184 |
)
|
185 |
|
186 |
+
tools_factory = ToolsFactory()
|
187 |
return (
|
188 |
[ask_caselaw] +
|
189 |
[tools_factory.create_tool(tool) for tool in [
|
|
|
200 |
cfg = OmegaConf.create({
|
201 |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
202 |
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
203 |
+
'corpus_key': str(os.environ['VECTARA_CORPUS_KEY']),
|
204 |
'api_key': str(os.environ['VECTARA_API_KEY']),
|
205 |
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
206 |
'demo_name': "legal-agent",
|
|
|
221 |
For example you can include citations, decision date, or case name.
|
222 |
- Citations include 3 components: volume number, reporter, and first page.
|
223 |
Here are some examples: '253 P.2d 136', '10 Alaska 11', '6 C.M.A. 3'
|
224 |
+
- Never use your internal knowledge to guess citations. Only use citations information provided by a tool or the user.
|
225 |
- If two cases have conflicting rulings, assume that the case with the more current ruling date is correct.
|
226 |
- If the response is based on cases that are older than 5 years, make sure to inform the user that the information may be outdated,
|
227 |
since some case opinions may no longer apply in law.
|
|
|
242 |
tools=create_assistant_tools(_cfg),
|
243 |
topic="Case law in Alaska",
|
244 |
custom_instructions=legal_assistant_instructions,
|
245 |
+
update_func=update_func,
|
246 |
)
|
247 |
return agent
|
app.py
CHANGED
@@ -1,159 +1,16 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
import uuid
|
4 |
|
5 |
import nest_asyncio
|
6 |
import asyncio
|
7 |
|
8 |
-
import streamlit as st
|
9 |
-
from streamlit_pills import pills
|
10 |
-
from streamlit_feedback import streamlit_feedback
|
11 |
-
|
12 |
-
from vectara_agentic.agent import AgentStatusType
|
13 |
-
|
14 |
-
from agent import initialize_agent, get_agent_config
|
15 |
-
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
|
16 |
-
|
17 |
-
initial_prompt = "How can I help you today?"
|
18 |
-
|
19 |
# Setup for HTTP API Calls to Amplitude Analytics
|
20 |
if 'device_id' not in st.session_state:
|
21 |
st.session_state.device_id = str(uuid.uuid4())
|
22 |
|
23 |
if "feedback_key" not in st.session_state:
|
24 |
-
|
25 |
-
|
26 |
-
def toggle_logs():
|
27 |
-
st.session_state.show_logs = not st.session_state.show_logs
|
28 |
-
|
29 |
-
def show_example_questions():
|
30 |
-
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
|
31 |
-
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
|
32 |
-
if selected_example:
|
33 |
-
st.session_state.ex_prompt = selected_example
|
34 |
-
st.session_state.first_turn = False
|
35 |
-
return True
|
36 |
-
return False
|
37 |
-
|
38 |
-
def update_func(status_type: AgentStatusType, msg: str):
|
39 |
-
if status_type != AgentStatusType.AGENT_UPDATE:
|
40 |
-
output = f"{status_type.value} - {msg}"
|
41 |
-
st.session_state.log_messages.append(output)
|
42 |
-
|
43 |
-
async def launch_bot():
|
44 |
-
def reset():
|
45 |
-
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
|
46 |
-
st.session_state.thinking_message = "Agent at work..."
|
47 |
-
st.session_state.log_messages = []
|
48 |
-
st.session_state.prompt = None
|
49 |
-
st.session_state.ex_prompt = None
|
50 |
-
st.session_state.first_turn = True
|
51 |
-
st.session_state.show_logs = False
|
52 |
-
if 'agent' not in st.session_state:
|
53 |
-
st.session_state.agent = initialize_agent(cfg, update_func=update_func)
|
54 |
-
|
55 |
-
if 'cfg' not in st.session_state:
|
56 |
-
cfg = get_agent_config()
|
57 |
-
st.session_state.cfg = cfg
|
58 |
-
st.session_state.ex_prompt = None
|
59 |
-
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else []
|
60 |
-
st.session_state.example_messages = [em for em in example_messages if len(em)>0]
|
61 |
-
reset()
|
62 |
-
|
63 |
-
cfg = st.session_state.cfg
|
64 |
-
|
65 |
-
# left side content
|
66 |
-
with st.sidebar:
|
67 |
-
image = Image.open('Vectara-logo.png')
|
68 |
-
st.image(image, width=175)
|
69 |
-
st.markdown(f"## {cfg['demo_welcome']}")
|
70 |
-
st.markdown(f"{cfg['demo_description']}")
|
71 |
-
|
72 |
-
st.markdown("\n\n")
|
73 |
-
bc1, _ = st.columns([1, 1])
|
74 |
-
with bc1:
|
75 |
-
if st.button('Start Over'):
|
76 |
-
reset()
|
77 |
-
st.rerun()
|
78 |
-
|
79 |
-
st.divider()
|
80 |
-
st.markdown(
|
81 |
-
"## How this works?\n"
|
82 |
-
"This app was built with [Vectara](https://vectara.com).\n\n"
|
83 |
-
"It demonstrates the use of Agentic RAG functionality with Vectara"
|
84 |
-
)
|
85 |
-
|
86 |
-
if "messages" not in st.session_state.keys():
|
87 |
-
reset()
|
88 |
-
|
89 |
-
# Display chat messages
|
90 |
-
for message in st.session_state.messages:
|
91 |
-
with st.chat_message(message["role"], avatar=message["avatar"]):
|
92 |
-
st.write(message["content"])
|
93 |
-
|
94 |
-
example_container = st.empty()
|
95 |
-
with example_container:
|
96 |
-
if show_example_questions():
|
97 |
-
example_container.empty()
|
98 |
-
st.session_state.first_turn = False
|
99 |
-
st.rerun()
|
100 |
-
|
101 |
-
# User-provided prompt
|
102 |
-
if st.session_state.ex_prompt:
|
103 |
-
prompt = st.session_state.ex_prompt
|
104 |
-
else:
|
105 |
-
prompt = st.chat_input()
|
106 |
-
if prompt:
|
107 |
-
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
|
108 |
-
st.session_state.prompt = prompt # Save the prompt in session state
|
109 |
-
st.session_state.log_messages = []
|
110 |
-
st.session_state.show_logs = False
|
111 |
-
with st.chat_message("user", avatar='π§βπ»'):
|
112 |
-
print(f"Starting new question: {prompt}\n")
|
113 |
-
st.write(prompt)
|
114 |
-
st.session_state.ex_prompt = None
|
115 |
-
|
116 |
-
# Generate a new response if last message is not from assistant
|
117 |
-
if st.session_state.prompt:
|
118 |
-
with st.chat_message("assistant", avatar='π€'):
|
119 |
-
with st.spinner(st.session_state.thinking_message):
|
120 |
-
res = st.session_state.agent.chat(st.session_state.prompt)
|
121 |
-
res = escape_dollars_outside_latex(res)
|
122 |
-
message = {"role": "assistant", "content": res, "avatar": 'π€'}
|
123 |
-
st.session_state.messages.append(message)
|
124 |
-
st.markdown(res)
|
125 |
-
|
126 |
-
send_amplitude_data(
|
127 |
-
user_query=st.session_state.messages[-2]["content"],
|
128 |
-
bot_response=st.session_state.messages[-1]["content"],
|
129 |
-
demo_name=cfg['demo_name']
|
130 |
-
)
|
131 |
-
|
132 |
-
st.session_state.ex_prompt = None
|
133 |
-
st.session_state.prompt = None
|
134 |
-
st.session_state.first_turn = False
|
135 |
-
st.rerun()
|
136 |
-
|
137 |
-
# Record user feedback
|
138 |
-
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How can I help you today?"):
|
139 |
-
streamlit_feedback(
|
140 |
-
feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
|
141 |
-
kwargs = {"user_query": st.session_state.messages[-2]["content"],
|
142 |
-
"bot_response": st.session_state.messages[-1]["content"],
|
143 |
-
"demo_name": cfg["demo_name"]}
|
144 |
-
)
|
145 |
-
|
146 |
-
log_placeholder = st.empty()
|
147 |
-
with log_placeholder.container():
|
148 |
-
if st.session_state.show_logs:
|
149 |
-
st.button("Hide Logs", on_click=toggle_logs)
|
150 |
-
for msg in st.session_state.log_messages:
|
151 |
-
st.text(msg)
|
152 |
-
else:
|
153 |
-
if len(st.session_state.log_messages) > 0:
|
154 |
-
st.button("Show Logs", on_click=toggle_logs)
|
155 |
-
|
156 |
-
sys.stdout.flush()
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
st.set_page_config(page_title="Legal Assistant", layout="wide")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from st_app import launch_bot
|
3 |
import uuid
|
4 |
|
5 |
import nest_asyncio
|
6 |
import asyncio
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Setup for HTTP API Calls to Amplitude Analytics
|
9 |
if 'device_id' not in st.session_state:
|
10 |
st.session_state.device_id = str(uuid.uuid4())
|
11 |
|
12 |
if "feedback_key" not in st.session_state:
|
13 |
+
st.session_state.feedback_key = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
if __name__ == "__main__":
|
16 |
st.set_page_config(page_title="Legal Assistant", layout="wide")
|
requirements.txt
CHANGED
@@ -6,4 +6,4 @@ streamlit-feedback==0.1.3
|
|
6 |
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
-
vectara-agentic==0.1.
|
|
|
6 |
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
+
vectara-agentic==0.1.16
|
st_app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from streamlit_pills import pills
|
6 |
+
from streamlit_feedback import streamlit_feedback
|
7 |
+
|
8 |
+
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
|
9 |
+
|
10 |
+
from vectara_agentic.agent import AgentStatusType
|
11 |
+
from agent import initialize_agent, get_agent_config
|
12 |
+
|
13 |
+
initial_prompt = "How can I help you today?"
|
14 |
+
|
15 |
+
def toggle_logs():
|
16 |
+
st.session_state.show_logs = not st.session_state.show_logs
|
17 |
+
|
18 |
+
def show_example_questions():
|
19 |
+
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
|
20 |
+
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
|
21 |
+
if selected_example:
|
22 |
+
st.session_state.ex_prompt = selected_example
|
23 |
+
st.session_state.first_turn = False
|
24 |
+
return True
|
25 |
+
return False
|
26 |
+
|
27 |
+
def update_func(status_type: AgentStatusType, msg: str):
|
28 |
+
if status_type != AgentStatusType.AGENT_UPDATE:
|
29 |
+
output = f"{status_type.value} - {msg}"
|
30 |
+
st.session_state.log_messages.append(output)
|
31 |
+
|
32 |
+
async def launch_bot():
|
33 |
+
def reset():
|
34 |
+
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
|
35 |
+
st.session_state.thinking_message = "Agent at work..."
|
36 |
+
st.session_state.log_messages = []
|
37 |
+
st.session_state.prompt = None
|
38 |
+
st.session_state.ex_prompt = None
|
39 |
+
st.session_state.first_turn = True
|
40 |
+
st.session_state.logs_enabled = False
|
41 |
+
st.session_state.show_logs = False
|
42 |
+
if 'agent' not in st.session_state:
|
43 |
+
st.session_state.agent = initialize_agent(cfg, update_func=update_func)
|
44 |
+
else:
|
45 |
+
st.session_state.agent.clear_memory()
|
46 |
+
|
47 |
+
if 'cfg' not in st.session_state:
|
48 |
+
cfg = get_agent_config()
|
49 |
+
st.session_state.cfg = cfg
|
50 |
+
st.session_state.ex_prompt = None
|
51 |
+
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else []
|
52 |
+
st.session_state.example_messages = [em for em in example_messages if len(em)>0]
|
53 |
+
reset()
|
54 |
+
|
55 |
+
cfg = st.session_state.cfg
|
56 |
+
|
57 |
+
# left side content
|
58 |
+
with st.sidebar:
|
59 |
+
image = Image.open('Vectara-logo.png')
|
60 |
+
st.image(image, width=175)
|
61 |
+
st.markdown(f"## {cfg['demo_welcome']}")
|
62 |
+
st.markdown(f"{cfg['demo_description']}")
|
63 |
+
|
64 |
+
st.markdown("\n\n")
|
65 |
+
bc1, bc2 = st.columns([1, 1])
|
66 |
+
with bc1:
|
67 |
+
if st.button('Start Over'):
|
68 |
+
reset()
|
69 |
+
st.rerun()
|
70 |
+
with bc2: # Updated button for enabling/disabling logs
|
71 |
+
if st.session_state.logs_enabled:
|
72 |
+
if st.button('Disable Logs', key='disable_logs'):
|
73 |
+
st.session_state.logs_enabled = False
|
74 |
+
st.rerun()
|
75 |
+
else:
|
76 |
+
if st.button('Enable Logs', key='enable_logs'):
|
77 |
+
st.session_state.logs_enabled = True
|
78 |
+
st.rerun()
|
79 |
+
|
80 |
+
st.divider()
|
81 |
+
st.markdown(
|
82 |
+
"## How this works?\n"
|
83 |
+
"This app was built with [Vectara](https://vectara.com).\n\n"
|
84 |
+
"It demonstrates the use of Agentic RAG functionality with Vectara"
|
85 |
+
)
|
86 |
+
|
87 |
+
if "messages" not in st.session_state.keys():
|
88 |
+
reset()
|
89 |
+
|
90 |
+
# Display chat messages
|
91 |
+
for message in st.session_state.messages:
|
92 |
+
with st.chat_message(message["role"], avatar=message["avatar"]):
|
93 |
+
st.write(message["content"])
|
94 |
+
|
95 |
+
example_container = st.empty()
|
96 |
+
with example_container:
|
97 |
+
if show_example_questions():
|
98 |
+
example_container.empty()
|
99 |
+
st.session_state.first_turn = False
|
100 |
+
st.rerun()
|
101 |
+
|
102 |
+
# User-provided prompt
|
103 |
+
if st.session_state.ex_prompt:
|
104 |
+
prompt = st.session_state.ex_prompt
|
105 |
+
else:
|
106 |
+
prompt = st.chat_input()
|
107 |
+
if prompt:
|
108 |
+
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
|
109 |
+
st.session_state.prompt = prompt # Save the prompt in session state
|
110 |
+
st.session_state.log_messages = []
|
111 |
+
st.session_state.show_logs = False
|
112 |
+
with st.chat_message("user", avatar='π§βπ»'):
|
113 |
+
print(f"Starting new question: {prompt}\n")
|
114 |
+
st.write(prompt)
|
115 |
+
st.session_state.ex_prompt = None
|
116 |
+
|
117 |
+
# Generate a new response if last message is not from assistant
|
118 |
+
if st.session_state.prompt:
|
119 |
+
with st.chat_message("assistant", avatar='π€'):
|
120 |
+
with st.spinner(st.session_state.thinking_message):
|
121 |
+
res = st.session_state.agent.chat(st.session_state.prompt)
|
122 |
+
res = escape_dollars_outside_latex(res)
|
123 |
+
message = {"role": "assistant", "content": res, "avatar": 'π€'}
|
124 |
+
st.session_state.messages.append(message)
|
125 |
+
st.markdown(res)
|
126 |
+
|
127 |
+
send_amplitude_data(
|
128 |
+
user_query=st.session_state.messages[-2]["content"],
|
129 |
+
bot_response=st.session_state.messages[-1]["content"],
|
130 |
+
demo_name=cfg['demo_name']
|
131 |
+
)
|
132 |
+
|
133 |
+
st.session_state.ex_prompt = None
|
134 |
+
st.session_state.prompt = None
|
135 |
+
st.session_state.first_turn = False
|
136 |
+
st.rerun()
|
137 |
+
|
138 |
+
# Record user feedback
|
139 |
+
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt):
|
140 |
+
if st.session_state.show_logs and st.session_state.logs_enabled: # Only show logs if enabled
|
141 |
+
streamlit_feedback(
|
142 |
+
feedback_type="thumbs", on_submit=thumbs_feedback, key=st.session_state.feedback_key,
|
143 |
+
kwargs={"user_query": st.session_state.messages[-2]["content"],
|
144 |
+
"bot_response": st.session_state.messages[-1]["content"],
|
145 |
+
"demo_name": cfg["demo_name"]}
|
146 |
+
)
|
147 |
+
|
148 |
+
log_placeholder = st.empty()
|
149 |
+
with log_placeholder.container():
|
150 |
+
if st.session_state.logs_enabled: # Show logs button only if log toggle is enabled
|
151 |
+
if st.session_state.show_logs:
|
152 |
+
st.button("Hide Logs", on_click=toggle_logs)
|
153 |
+
for msg in st.session_state.log_messages:
|
154 |
+
if len(msg) > 100: # Use text_area for longer messages
|
155 |
+
st.text_area(label="Log", value=msg, height=100, disabled=True)
|
156 |
+
else:
|
157 |
+
st.text(msg)
|
158 |
+
else:
|
159 |
+
if len(st.session_state.log_messages) > 0:
|
160 |
+
st.button("Show Logs", on_click=toggle_logs)
|
161 |
+
|
162 |
+
|
163 |
+
sys.stdout.flush()
|