Upload 4 files
Browse files- data.csv +11 -0
- pasta.py +178 -0
- qnacsv.csv +0 -0
- requirements.txt +13 -0
data.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Patient_Name,Country,Disease,CUI,Snomed,Oxygen_Rate,Med_Type,Admission_Date
|
2 |
+
Rahul,India,Diabetes,CUI00234,SNO34672,90,Medicare,23-09-2022
|
3 |
+
Kumar ,Sri Lanka,Severe Fever,CUI00235,SNO34673,91,Medicaid,04-03-2022
|
4 |
+
Ricky ,Australia,Edema,CUI00236,SNO34674,92,Commercial,02-09-2022
|
5 |
+
Jayasuriya,Sri Lanka,Cardiac Arrest,CUI00237,SNO34675,93,Medicare,13-01-2022
|
6 |
+
Mahela,Sri Lanka,Alzheimer,CUI00238,SNO34676,94,Medicaid,07-03-2022
|
7 |
+
Kohli,India,Cancer,CUI00239,SNO34677,95,Commercial,05-05-2022
|
8 |
+
Inzamam,Pakistan,Pneumonia,CUI00240,SNO34678,96,Medicare,04-03-2022
|
9 |
+
Jacques,South Africa,Severe Fever,CUI00241,SNO34679,97,Medicaid,02-09-2022
|
10 |
+
Saurav,India,Edema,CUI00242,SNO34680,98,Medicare,13-01-2022
|
11 |
+
David,India,Cardiac Arrest,CUI00243,SNO34681,99,Medicaid,07-03-2022
|
pasta.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri May 26 14:07:22 2023
|
4 |
+
|
5 |
+
@author: vibin
|
6 |
+
"""
|
7 |
+
|
8 |
+
import streamlit as st
|
9 |
+
from pandasql import sqldf
|
10 |
+
import pandas as pd
|
11 |
+
import re
|
12 |
+
from typing import List
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
14 |
+
import re
|
15 |
+
|
16 |
+
|
17 |
+
@st.cache_resource()
|
18 |
+
def tapas_model():
|
19 |
+
return(pipeline(task="table-question-answering", model="google/tapas-base-finetuned-wtq"))
|
20 |
+
|
21 |
+
@st.cache_resource()
|
22 |
+
def prepare_input(question: str, table: List[str]):
|
23 |
+
table_prefix = "table:"
|
24 |
+
question_prefix = "question:"
|
25 |
+
join_table = ",".join(table)
|
26 |
+
inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
|
27 |
+
input_ids = tokenizer(inputs, max_length=512, return_tensors="pt").input_ids
|
28 |
+
return input_ids
|
29 |
+
|
30 |
+
@st.cache_resource()
|
31 |
+
def inference(question: str, table: List[str]) -> str:
|
32 |
+
input_data = prepare_input(question=question, table=table)
|
33 |
+
input_data = input_data.to(model.device)
|
34 |
+
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
|
35 |
+
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
|
36 |
+
return result
|
37 |
+
|
38 |
+
@st.cache_resource()
|
39 |
+
def tokmod(tok_md):
|
40 |
+
tkn = AutoTokenizer.from_pretrained(tok_md)
|
41 |
+
mdl = AutoModelForSeq2SeqLM.from_pretrained(tok_md)
|
42 |
+
return(tkn,mdl)
|
43 |
+
|
44 |
+
|
45 |
+
### Main
|
46 |
+
|
47 |
+
nav = st.sidebar.radio("Navigation",["TAPAS","Text2SQL"])
|
48 |
+
if nav == "TAPAS":
|
49 |
+
|
50 |
+
col1 , col2, col3 = st.columns(3)
|
51 |
+
col2.title("TAPAS")
|
52 |
+
|
53 |
+
col3 , col4 = st.columns([3,12])
|
54 |
+
col4.text("Tabular Data Text Extraction using text")
|
55 |
+
|
56 |
+
table = pd.read_csv("data.csv")
|
57 |
+
table = table.astype(str)
|
58 |
+
st.text("DataSet - ")
|
59 |
+
st.dataframe(table,width=3000,height= 400)
|
60 |
+
|
61 |
+
st.title("")
|
62 |
+
|
63 |
+
lst_q = ["Which country has low medicare","Who are the patients from india","Who are the patients from india","Patients who have Edema","CUI code for diabetes patients","Patients having oxygen less than 94 but 91"]
|
64 |
+
|
65 |
+
v2 = st.selectbox("Choose your text",lst_q,index = 0)
|
66 |
+
|
67 |
+
st.title("")
|
68 |
+
|
69 |
+
sql_txt = st.text_area("TAPAS Input",v2)
|
70 |
+
|
71 |
+
if st.button("Predict"):
|
72 |
+
tqa = tapas_model()
|
73 |
+
txt_sql = tqa(table=table, query=sql_txt)["answer"]
|
74 |
+
st.text("Output - ")
|
75 |
+
st.success(f"{txt_sql}")
|
76 |
+
# st.write(all_students)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
elif nav == "Text2SQL":
|
81 |
+
|
82 |
+
### Function
|
83 |
+
col1 , col2, col3 = st.columns(3)
|
84 |
+
col2.title("Text2SQL")
|
85 |
+
|
86 |
+
col3 , col4 = st.columns([1,20])
|
87 |
+
col4.text("Text will be converted to SQL Query and can extract the data from DataSet")
|
88 |
+
|
89 |
+
# Import Data
|
90 |
+
|
91 |
+
df_qna = pd.read_csv("qnacsv.csv", encoding= 'unicode_escape')
|
92 |
+
|
93 |
+
st.title("")
|
94 |
+
|
95 |
+
st.text("DataSet - ")
|
96 |
+
st.dataframe(df_qna,width=3000,height= 500)
|
97 |
+
|
98 |
+
st.title("")
|
99 |
+
|
100 |
+
lst_q = ["what interface is measure indicator code = 72_HR_ABX and version is 1 and source is TD", "get class code with measure = 72_HR_ABX", "get sum of version for Class_Code is Antibiotic Stewardship", "what interface is measure indicator code = 72_HR_ABX"]
|
101 |
+
v2 = st.selectbox("Choose your text",lst_q,index = 0)
|
102 |
+
|
103 |
+
st.title("")
|
104 |
+
|
105 |
+
|
106 |
+
sql_txt = st.text_area("Text for SQL Conversion",v2)
|
107 |
+
|
108 |
+
|
109 |
+
if st.button("Predict"):
|
110 |
+
|
111 |
+
tok_model = "juierror/flan-t5-text2sql-with-schema"
|
112 |
+
tokenizer,model = tokmod(tok_model)
|
113 |
+
|
114 |
+
# text = "what interface is measure indicator code = 72_HR_ABX and version is 1 and source is TD"
|
115 |
+
table_name = "df_qna"
|
116 |
+
table_col = ["Type","Class_Code", "Version","Measure_Indicator_Code","Measure_Indicator_Name","Description_Definition", "Source", "Interfaces"]
|
117 |
+
|
118 |
+
txt_sql = inference(question=sql_txt, table=table_col)
|
119 |
+
|
120 |
+
|
121 |
+
### SQL Modification
|
122 |
+
sql_avg = ["AVG","COUNT","DISTINCT","MAX","MIN","SUM"]
|
123 |
+
txt_sql = txt_sql.replace("table",table_name)
|
124 |
+
sql_quotes = []
|
125 |
+
for match in re.finditer("=",txt_sql):
|
126 |
+
new_txt = txt_sql[match.span()[1]+1:]
|
127 |
+
try:
|
128 |
+
match2 = re.search("AND",new_txt)
|
129 |
+
sql_quotes.append((new_txt[:match2.span()[0]]).strip())
|
130 |
+
except:
|
131 |
+
sql_quotes.append(new_txt.strip())
|
132 |
+
|
133 |
+
for i in sql_quotes:
|
134 |
+
qts = "'" + i + "'"
|
135 |
+
txt_sql = txt_sql.replace(i, qts)
|
136 |
+
|
137 |
+
for r in sql_avg:
|
138 |
+
if r in txt_sql:
|
139 |
+
rr = re.search(rf"{r} (\w+)", txt_sql)
|
140 |
+
init = " " + rr[1]
|
141 |
+
qts = "(" + rr[1] + ")"
|
142 |
+
txt_sql = txt_sql.replace(init,qts)
|
143 |
+
else:
|
144 |
+
pass
|
145 |
+
|
146 |
+
|
147 |
+
st.success(f"{txt_sql}")
|
148 |
+
all_students = sqldf(txt_sql)
|
149 |
+
|
150 |
+
st.text("Output - ")
|
151 |
+
st.write(all_students)
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
qnacsv.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip
|
2 |
+
Cmake
|
3 |
+
wheel
|
4 |
+
pandas
|
5 |
+
jinja2==3.1.2
|
6 |
+
pandasql
|
7 |
+
Cython
|
8 |
+
datasets
|
9 |
+
huggingface-hub
|
10 |
+
tapas
|
11 |
+
torch
|
12 |
+
transformers
|
13 |
+
streamlit
|