Spaces:
Runtime error
Runtime error
File size: 1,519 Bytes
bb822e2 2a7f953 910ef46 bb822e2 2a7f953 bb822e2 2a7f953 bb822e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
"""
M6_NB_MiniProject_1_PartB_Deploy_Medical_Q&A_GPT2.ipynb
Original file in google drive
"""
import os
import gradio as gr
import torch
import transformers
from transformers import AutoModelWithLMHead, AutoTokenizer
def generate_response(model, tokenizer, prompt, max_length=512):
# YOUR CODE HERE ...
input_ids = tokenizer.encode(prompt, return_tensors="pt") # 'pt' for returning pytorch tensor
# Create the attention mask and pad token id
attention_mask = torch.ones_like(input_ids)
pad_token_id = tokenizer.eos_token_id
output = model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
attention_mask=attention_mask,
pad_token_id=pad_token_id
)
return tokenizer.decode(output[0], skip_special_tokens=True)
def generate_query_response(prompt, max_length=200):
# Load your model from hub
model = AutoModelWithLMHead.from_pretrained("vanim/chatgpt2-medical-QnA")
# Load your tokenizer from hub
tokenizer = AutoTokenizer.from_pretrained("vanim/chatgpt2-medical-QnA")
return generate_response(model, tokenizer, prompt, max_length)
# Create title, description and article strings
title = "Medical QnA chat bot"
description = "ChatGPT2 based Medical Q and A demo"
demo = gr.Interface(fn=generate_query_response,
inputs = "text",
outputs = "text",
title=title,
description=description,)
#Launch the demo
demo.launch()
|