Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------------------ | |
# Minimal DALL-E | |
# Copyright (c) 2021 KakaoBrain. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------------------ | |
import os | |
import sys | |
import argparse | |
import clip | |
import numpy as np | |
from PIL import Image | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
from dalle.models import Dalle | |
from dalle.utils.utils import set_seed, clip_score | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-n', '--num_candidates', type=int, default=96) | |
parser.add_argument('--prompt', type=str, default='A painting of a tree on the ocean') | |
parser.add_argument('--softmax-temperature', type=float, default=1.0) | |
parser.add_argument('--top-k', type=int, default=256) | |
parser.add_argument('--top-p', type=float, default=None, help='0.0 <= top-p <= 1.0') | |
parser.add_argument('--seed', type=int, default=0) | |
args = parser.parse_args() | |
# Setup | |
assert args.top_k <= 256, "It is recommended that top_k is set lower than 256." | |
set_seed(args.seed) | |
device = 'cuda:0' | |
model = Dalle.from_pretrained('minDALL-E/1.3B') # This will automatically download the pretrained model. | |
model.to(device=device) | |
# Sampling | |
images = model.sampling(prompt=args.prompt, | |
top_k=args.top_k, | |
top_p=args.top_p, | |
softmax_temperature=args.softmax_temperature, | |
num_candidates=args.num_candidates, | |
device=device).cpu().numpy() | |
images = np.transpose(images, (0, 2, 3, 1)) | |
# CLIP Re-ranking | |
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device) | |
model_clip.to(device=device) | |
rank = clip_score(prompt=args.prompt, | |
images=images, | |
model_clip=model_clip, | |
preprocess_clip=preprocess_clip, | |
device=device) | |
# Save images | |
images = images[rank] | |
print(rank, images.shape) | |
if not os.path.exists('./figures'): | |
os.makedirs('./figures') | |
for i in range(min(16, args.num_candidates)): | |
im = Image.fromarray((images[i]*255).astype(np.uint8)) | |
im.save(f'./figures/{args.prompt}_{i}.png') | |