Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Sean Cho
commited on
Commit
β’
097981b
1
Parent(s):
86e581e
Big update
Browse files- README.md +2 -1
- app.py +201 -376
- model_info_cache.pkl +0 -3
- model_size_cache.pkl +0 -3
- models_backlinks.py +0 -1
- package-lock.json +6 -0
- requirements.txt +9 -62
- scripts/create_request_file.py +107 -0
- scripts/update_request_files.py +82 -0
- src/assets/hardcoded_evals.py +0 -14
- src/{assets/text_content.py β display/about.py} +7 -2
- src/{assets β display}/css_html_js.py +20 -34
- src/display/formatting.py +40 -0
- src/display/utils.py +151 -0
- src/display_models/get_model_metadata.py +0 -167
- src/display_models/model_metadata_flags.py +0 -8
- src/display_models/model_metadata_type.py +0 -553
- src/display_models/read_results.py +0 -152
- src/display_models/utils.py +0 -149
- src/envs.py +32 -0
- src/leaderboard/filter_models.py +50 -0
- src/leaderboard/read_evals.py +234 -0
- src/{load_from_hub.py β populate.py} +11 -53
- src/rate_limiting.py +0 -16
- src/submission/check_validity.py +129 -0
- src/submission/submit.py +138 -0
- src/tools/collections.py +82 -0
- src/tools/model_backlinks.py +3 -0
- src/tools/plots.py +154 -0
README.md
CHANGED
@@ -4,11 +4,12 @@ emoji: π
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
duplicated_from: HuggingFaceH4/open_llm_leaderboard
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.9.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
duplicated_from: HuggingFaceH4/open_llm_leaderboard
|
12 |
+
fullWidth: true
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,106 +1,69 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from datetime import datetime, timezone
|
4 |
-
import re
|
5 |
-
from distutils.util import strtobool
|
6 |
-
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
-
from huggingface_hub import
|
|
|
11 |
|
12 |
-
from src.
|
13 |
-
from src.assets.text_content import (
|
14 |
CITATION_BUTTON_LABEL,
|
15 |
CITATION_BUTTON_TEXT,
|
16 |
EVALUATION_QUEUE_TEXT,
|
17 |
INTRODUCTION_TEXT,
|
18 |
LLM_BENCHMARKS_TEXT,
|
|
|
19 |
TITLE,
|
20 |
BOTTOM_LOGO,
|
21 |
)
|
22 |
-
from src.
|
23 |
-
from src.
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
AutoEvalColumn,
|
25 |
-
|
26 |
fields,
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
-
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub
|
32 |
-
from src.rate_limiting import user_submission_permission
|
33 |
-
|
34 |
-
pd.set_option("display.precision", 1)
|
35 |
-
|
36 |
-
# clone / pull the lmeh eval data
|
37 |
-
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
38 |
-
|
39 |
-
QUEUE_REPO = "open-ko-llm-leaderboard/requests"
|
40 |
-
RESULTS_REPO = "open-ko-llm-leaderboard/results"
|
41 |
-
|
42 |
-
PRIVATE_QUEUE_REPO = "open-ko-llm-leaderboard/private-requests"
|
43 |
-
PRIVATE_RESULTS_REPO = "open-ko-llm-leaderboard/private-results"
|
44 |
-
|
45 |
-
IS_PUBLIC = bool(strtobool(os.environ.get("IS_PUBLIC", "True")))
|
46 |
-
|
47 |
-
EVAL_REQUESTS_PATH = "eval-queue"
|
48 |
-
EVAL_RESULTS_PATH = "eval-results"
|
49 |
-
|
50 |
-
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
51 |
-
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
|
52 |
-
|
53 |
-
api = HfApi(token=H4_TOKEN)
|
54 |
|
55 |
|
56 |
def restart_space():
|
57 |
-
|
58 |
-
|
59 |
-
# Rate limit variables
|
60 |
-
RATE_LIMIT_PERIOD = 7
|
61 |
-
RATE_LIMIT_QUOTA = 5
|
62 |
-
|
63 |
-
# Column selection
|
64 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
65 |
-
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
66 |
-
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
67 |
-
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
68 |
-
|
69 |
-
if not IS_PUBLIC:
|
70 |
-
COLS.insert(2, AutoEvalColumn.precision.name)
|
71 |
-
TYPES.insert(2, AutoEvalColumn.precision.type)
|
72 |
-
|
73 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
74 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
75 |
-
|
76 |
-
BENCHMARK_COLS = [
|
77 |
-
c.name
|
78 |
-
for c in [
|
79 |
-
AutoEvalColumn.arc,
|
80 |
-
AutoEvalColumn.hellaswag,
|
81 |
-
AutoEvalColumn.mmlu,
|
82 |
-
AutoEvalColumn.truthfulqa,
|
83 |
-
AutoEvalColumn.commongen_v2,
|
84 |
-
# TODO: Uncomment when we have results for these
|
85 |
-
# AutoEvalColumn.ethicalverification,
|
86 |
-
]
|
87 |
-
]
|
88 |
-
|
89 |
-
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None)
|
90 |
-
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None)
|
91 |
-
requested_models, users_to_submission_dates = get_all_requested_models(EVAL_REQUESTS_PATH)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
# Commented out because it causes infinite restart loops in local
|
98 |
-
# to_be_dumped = f"models = {repr(models)}\n"
|
99 |
|
100 |
-
|
101 |
-
#
|
|
|
|
|
102 |
|
103 |
-
|
104 |
|
105 |
(
|
106 |
finished_eval_queue_df,
|
@@ -109,142 +72,34 @@ models = original_df["model_name_for_query"].tolist() # needed for model backlin
|
|
109 |
failed_eval_queue_df,
|
110 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
111 |
|
112 |
-
## INTERACTION FUNCTIONS
|
113 |
-
def add_new_eval(
|
114 |
-
model: str,
|
115 |
-
base_model: str,
|
116 |
-
revision: str,
|
117 |
-
precision: str,
|
118 |
-
private: bool,
|
119 |
-
weight_type: str,
|
120 |
-
model_type: str,
|
121 |
-
):
|
122 |
-
precision = precision.split(" ")[0]
|
123 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
124 |
-
|
125 |
-
num_models_submitted_in_period = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD)
|
126 |
-
if num_models_submitted_in_period > RATE_LIMIT_QUOTA:
|
127 |
-
error_msg = f"Organisation or user `{model.split('/')[0]}`"
|
128 |
-
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
129 |
-
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
|
130 |
-
error_msg += "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard π€"
|
131 |
-
return styled_error(error_msg)
|
132 |
-
|
133 |
-
if model_type is None or model_type == "":
|
134 |
-
return styled_error("Please select a model type.")
|
135 |
-
|
136 |
-
# check the model actually exists before adding the eval
|
137 |
-
if revision == "":
|
138 |
-
revision = "main"
|
139 |
-
|
140 |
-
if weight_type in ["Delta", "Adapter"]:
|
141 |
-
base_model_on_hub, error = is_model_on_hub(base_model, revision)
|
142 |
-
if not base_model_on_hub:
|
143 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
144 |
-
|
145 |
-
if not weight_type == "Adapter":
|
146 |
-
model_on_hub, error = is_model_on_hub(model, revision)
|
147 |
-
if not model_on_hub:
|
148 |
-
return styled_error(f'Model "{model}" {error}')
|
149 |
-
|
150 |
-
model_info = api.model_info(repo_id=model, revision=revision)
|
151 |
-
|
152 |
-
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
153 |
-
try:
|
154 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
155 |
-
except AttributeError:
|
156 |
-
try:
|
157 |
-
size_match = re.search(size_pattern, model.lower())
|
158 |
-
model_size = size_match.group(0)
|
159 |
-
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
160 |
-
except AttributeError:
|
161 |
-
return 65
|
162 |
-
|
163 |
-
size_factor = 8 if (precision == "GPTQ" or "GPTQ" in model) else 1
|
164 |
-
model_size = size_factor * model_size
|
165 |
-
|
166 |
-
try:
|
167 |
-
license = model_info.cardData["license"]
|
168 |
-
except Exception:
|
169 |
-
license = "?"
|
170 |
-
|
171 |
-
print("adding new eval")
|
172 |
-
|
173 |
-
eval_entry = {
|
174 |
-
"model": model,
|
175 |
-
"base_model": base_model,
|
176 |
-
"revision": revision,
|
177 |
-
"private": private,
|
178 |
-
"precision": precision,
|
179 |
-
"weight_type": weight_type,
|
180 |
-
"status": "PENDING",
|
181 |
-
"submitted_time": current_time,
|
182 |
-
"model_type": model_type,
|
183 |
-
}
|
184 |
-
|
185 |
-
user_name = ""
|
186 |
-
model_path = model
|
187 |
-
if "/" in model:
|
188 |
-
user_name = model.split("/")[0]
|
189 |
-
model_path = model.split("/")[1]
|
190 |
-
|
191 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
192 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
193 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
194 |
-
|
195 |
-
if user_name == "upstage":
|
196 |
-
return styled_warning("The model participating as a Host in Upstage does not conduct evaluations to ensure the transparency and fairness of the leaderboard. Please take this into consideration.")
|
197 |
-
|
198 |
-
# Check if the model has been forbidden:
|
199 |
-
if out_path.split("eval-queue/")[1] in DO_NOT_SUBMIT_MODELS:
|
200 |
-
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
|
201 |
-
|
202 |
-
# Check for duplicate submission
|
203 |
-
if f"{model}_{revision}_{precision}" in requested_models:
|
204 |
-
return styled_warning("This model has been already submitted.")
|
205 |
-
|
206 |
-
with open(out_path, "w") as f:
|
207 |
-
f.write(json.dumps(eval_entry))
|
208 |
-
|
209 |
-
api.upload_file(
|
210 |
-
path_or_fileobj=out_path,
|
211 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
212 |
-
repo_id=QUEUE_REPO,
|
213 |
-
repo_type="dataset",
|
214 |
-
commit_message=f"Add {model} to eval queue",
|
215 |
-
)
|
216 |
-
|
217 |
-
# remove the local file
|
218 |
-
os.remove(out_path)
|
219 |
-
|
220 |
-
return styled_message(
|
221 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
222 |
-
)
|
223 |
-
|
224 |
-
|
225 |
-
# Basics
|
226 |
-
def change_tab(query_param: str):
|
227 |
-
query_param = query_param.replace("'", '"')
|
228 |
-
query_param = json.loads(query_param)
|
229 |
-
|
230 |
-
if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation":
|
231 |
-
return gr.Tabs.update(selected=1)
|
232 |
-
else:
|
233 |
-
return gr.Tabs.update(selected=0)
|
234 |
-
|
235 |
|
236 |
# Searching and filtering
|
237 |
-
def update_table(
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
df = select_columns(filtered_df, columns)
|
242 |
-
|
243 |
return df
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
246 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
247 |
|
|
|
248 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
249 |
always_here_cols = [
|
250 |
AutoEvalColumn.model_type_symbol.name,
|
@@ -256,18 +111,29 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
256 |
]
|
257 |
return filtered_df
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
"
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
def filter_models(
|
270 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
271 |
) -> pd.DataFrame:
|
272 |
# Show all models
|
273 |
if show_deleted:
|
@@ -275,9 +141,15 @@ def filter_models(
|
|
275 |
else: # Show only still on the hub models
|
276 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
type_emoji = [t[0] for t in type_query]
|
279 |
-
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
280 |
-
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
|
281 |
|
282 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
283 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
@@ -286,6 +158,7 @@ def filter_models(
|
|
286 |
|
287 |
return filtered_df
|
288 |
|
|
|
289 |
|
290 |
demo = gr.Blocks(css=custom_css)
|
291 |
with demo:
|
@@ -298,33 +171,21 @@ with demo:
|
|
298 |
with gr.Column():
|
299 |
with gr.Row():
|
300 |
search_bar = gr.Textbox(
|
301 |
-
placeholder=" π Search for your model and press ENTER...",
|
302 |
show_label=False,
|
303 |
elem_id="search-bar",
|
304 |
)
|
305 |
with gr.Row():
|
306 |
shown_columns = gr.CheckboxGroup(
|
307 |
choices=[
|
308 |
-
c
|
309 |
-
for c in
|
310 |
-
if c
|
311 |
-
not in [
|
312 |
-
AutoEvalColumn.dummy.name,
|
313 |
-
AutoEvalColumn.model.name,
|
314 |
-
AutoEvalColumn.model_type_symbol.name,
|
315 |
-
AutoEvalColumn.still_on_hub.name,
|
316 |
-
]
|
317 |
],
|
318 |
value=[
|
319 |
-
c
|
320 |
-
for c in
|
321 |
-
if c
|
322 |
-
not in [
|
323 |
-
AutoEvalColumn.dummy.name,
|
324 |
-
AutoEvalColumn.model.name,
|
325 |
-
AutoEvalColumn.model_type_symbol.name,
|
326 |
-
AutoEvalColumn.still_on_hub.name,
|
327 |
-
]
|
328 |
],
|
329 |
label="Select columns to show",
|
330 |
elem_id="column-select",
|
@@ -332,160 +193,132 @@ with demo:
|
|
332 |
)
|
333 |
with gr.Row():
|
334 |
deleted_models_visibility = gr.Checkbox(
|
335 |
-
value=
|
336 |
-
)
|
337 |
-
with gr.Column(min_width=320):
|
338 |
-
with gr.Box(elem_id="box-filter"):
|
339 |
-
filter_columns_type = gr.CheckboxGroup(
|
340 |
-
label="Model types",
|
341 |
-
choices=[
|
342 |
-
ModelType.PT.to_str(),
|
343 |
-
# ModelType.FT.to_str(),
|
344 |
-
ModelType.IFT.to_str(),
|
345 |
-
ModelType.RL.to_str(),
|
346 |
-
],
|
347 |
-
value=[
|
348 |
-
ModelType.PT.to_str(),
|
349 |
-
# ModelType.FT.to_str(),
|
350 |
-
ModelType.IFT.to_str(),
|
351 |
-
ModelType.RL.to_str(),
|
352 |
-
],
|
353 |
-
interactive=True,
|
354 |
-
elem_id="filter-columns-type",
|
355 |
)
|
356 |
-
|
357 |
-
label="
|
358 |
-
choices=["torch.float16"], #, "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
359 |
-
value=["torch.float16"], #, "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
360 |
-
interactive=False,
|
361 |
-
elem_id="filter-columns-precision",
|
362 |
)
|
363 |
-
|
364 |
-
label="
|
365 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
366 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
367 |
-
interactive=True,
|
368 |
-
elem_id="filter-columns-size",
|
369 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
leaderboard_table = gr.components.Dataframe(
|
372 |
value=leaderboard_df[
|
373 |
-
[
|
374 |
+ shown_columns.value
|
375 |
+ [AutoEvalColumn.dummy.name]
|
376 |
],
|
377 |
-
headers=[
|
378 |
-
AutoEvalColumn.model_type_symbol.name,
|
379 |
-
AutoEvalColumn.model.name,
|
380 |
-
]
|
381 |
-
+ shown_columns.value
|
382 |
-
+ [AutoEvalColumn.dummy.name],
|
383 |
datatype=TYPES,
|
384 |
-
max_rows=None,
|
385 |
elem_id="leaderboard-table",
|
386 |
interactive=False,
|
387 |
visible=True,
|
|
|
388 |
)
|
389 |
|
390 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
391 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
392 |
-
value=original_df,
|
393 |
headers=COLS,
|
394 |
datatype=TYPES,
|
395 |
-
max_rows=None,
|
396 |
visible=False,
|
397 |
)
|
398 |
search_bar.submit(
|
399 |
update_table,
|
400 |
[
|
401 |
hidden_leaderboard_table_for_search,
|
402 |
-
leaderboard_table,
|
403 |
shown_columns,
|
404 |
filter_columns_type,
|
405 |
filter_columns_precision,
|
406 |
filter_columns_size,
|
407 |
deleted_models_visibility,
|
|
|
|
|
408 |
search_bar,
|
409 |
],
|
410 |
leaderboard_table,
|
411 |
)
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
leaderboard_table,
|
417 |
-
shown_columns,
|
418 |
-
filter_columns_type,
|
419 |
-
filter_columns_precision,
|
420 |
-
filter_columns_size,
|
421 |
-
deleted_models_visibility,
|
422 |
-
search_bar,
|
423 |
-
],
|
424 |
-
leaderboard_table,
|
425 |
-
queue=True,
|
426 |
-
)
|
427 |
-
filter_columns_type.change(
|
428 |
-
update_table,
|
429 |
-
[
|
430 |
-
hidden_leaderboard_table_for_search,
|
431 |
-
leaderboard_table,
|
432 |
-
shown_columns,
|
433 |
-
filter_columns_type,
|
434 |
-
filter_columns_precision,
|
435 |
-
filter_columns_size,
|
436 |
-
deleted_models_visibility,
|
437 |
-
search_bar,
|
438 |
-
],
|
439 |
-
leaderboard_table,
|
440 |
-
queue=True,
|
441 |
-
)
|
442 |
-
filter_columns_precision.change(
|
443 |
-
update_table,
|
444 |
-
[
|
445 |
-
hidden_leaderboard_table_for_search,
|
446 |
-
leaderboard_table,
|
447 |
-
shown_columns,
|
448 |
-
filter_columns_type,
|
449 |
-
filter_columns_precision,
|
450 |
-
filter_columns_size,
|
451 |
-
deleted_models_visibility,
|
452 |
-
search_bar,
|
453 |
-
],
|
454 |
-
leaderboard_table,
|
455 |
-
queue=True,
|
456 |
-
)
|
457 |
-
filter_columns_size.change(
|
458 |
update_table,
|
459 |
[
|
460 |
hidden_leaderboard_table_for_search,
|
461 |
-
leaderboard_table,
|
462 |
shown_columns,
|
463 |
filter_columns_type,
|
464 |
filter_columns_precision,
|
465 |
filter_columns_size,
|
466 |
deleted_models_visibility,
|
|
|
|
|
467 |
search_bar,
|
468 |
],
|
469 |
leaderboard_table,
|
470 |
-
queue=True,
|
471 |
)
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
leaderboard_table,
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
488 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
489 |
|
490 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
491 |
with gr.Column():
|
@@ -502,7 +335,7 @@ with demo:
|
|
502 |
value=finished_eval_queue_df,
|
503 |
headers=EVAL_COLS,
|
504 |
datatype=EVAL_TYPES,
|
505 |
-
|
506 |
)
|
507 |
with gr.Accordion(
|
508 |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
@@ -513,7 +346,7 @@ with demo:
|
|
513 |
value=running_eval_queue_df,
|
514 |
headers=EVAL_COLS,
|
515 |
datatype=EVAL_TYPES,
|
516 |
-
|
517 |
)
|
518 |
|
519 |
with gr.Accordion(
|
@@ -525,7 +358,7 @@ with demo:
|
|
525 |
value=pending_eval_queue_df,
|
526 |
headers=EVAL_COLS,
|
527 |
datatype=EVAL_TYPES,
|
528 |
-
|
529 |
)
|
530 |
with gr.Accordion(
|
531 |
f"β Failed Evaluations ({len(failed_eval_queue_df)})",
|
@@ -536,7 +369,7 @@ with demo:
|
|
536 |
value=failed_eval_queue_df,
|
537 |
headers=EVAL_COLS,
|
538 |
datatype=EVAL_TYPES,
|
539 |
-
|
540 |
)
|
541 |
with gr.Row():
|
542 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
@@ -544,37 +377,26 @@ with demo:
|
|
544 |
with gr.Row():
|
545 |
with gr.Column():
|
546 |
model_name_textbox = gr.Textbox(label="Model name")
|
547 |
-
revision_name_textbox = gr.Textbox(label="Revision", placeholder="main")
|
548 |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
549 |
model_type = gr.Dropdown(
|
550 |
-
choices=[
|
551 |
-
ModelType.PT.to_str(" : "),
|
552 |
-
# ModelType.FT.to_str(" : "),
|
553 |
-
ModelType.IFT.to_str(" : "),
|
554 |
-
ModelType.RL.to_str(" : "),
|
555 |
-
],
|
556 |
label="Model type",
|
557 |
multiselect=False,
|
558 |
-
value=
|
559 |
interactive=True,
|
560 |
)
|
561 |
|
562 |
with gr.Column():
|
563 |
precision = gr.Dropdown(
|
564 |
-
choices=[
|
565 |
-
"float16",
|
566 |
-
# "bfloat16",
|
567 |
-
# "8bit (LLM.int8)",
|
568 |
-
# "4bit (QLoRA / FP4)",
|
569 |
-
# "GPTQ"
|
570 |
-
],
|
571 |
label="Precision",
|
572 |
multiselect=False,
|
573 |
value="float16",
|
574 |
interactive=True,
|
575 |
)
|
576 |
weight_type = gr.Dropdown(
|
577 |
-
choices=[
|
578 |
label="Weights type",
|
579 |
multiselect=False,
|
580 |
value="Original",
|
@@ -603,20 +425,23 @@ with demo:
|
|
603 |
citation_button = gr.Textbox(
|
604 |
value=CITATION_BUTTON_TEXT,
|
605 |
label=CITATION_BUTTON_LABEL,
|
|
|
606 |
elem_id="citation-button",
|
607 |
-
|
608 |
-
|
609 |
gr.HTML(BOTTOM_LOGO)
|
610 |
|
611 |
-
dummy = gr.Textbox(visible=False)
|
612 |
-
demo.load(
|
613 |
-
change_tab,
|
614 |
-
dummy,
|
615 |
-
tabs,
|
616 |
-
_js=get_window_url_params,
|
617 |
-
)
|
618 |
-
|
619 |
scheduler = BackgroundScheduler()
|
620 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
621 |
scheduler.start()
|
622 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from gradio_space_ci import configure_space_ci # FOR CI
|
6 |
|
7 |
+
from src.display.about import (
|
|
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
+
FAQ_TEXT,
|
14 |
TITLE,
|
15 |
BOTTOM_LOGO,
|
16 |
)
|
17 |
+
from src.display.css_html_js import custom_css
|
18 |
+
from src.display.utils import (
|
19 |
+
BENCHMARK_COLS,
|
20 |
+
COLS,
|
21 |
+
EVAL_COLS,
|
22 |
+
EVAL_TYPES,
|
23 |
+
NUMERIC_INTERVALS,
|
24 |
+
TYPES,
|
25 |
AutoEvalColumn,
|
26 |
+
ModelType,
|
27 |
fields,
|
28 |
+
WeightType,
|
29 |
+
Precision
|
30 |
+
)
|
31 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
32 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
33 |
+
from src.submission.submit import add_new_eval
|
34 |
+
from src.tools.collections import update_collections
|
35 |
+
from src.tools.plots import (
|
36 |
+
create_metric_plot_obj,
|
37 |
+
create_plot_df,
|
38 |
+
create_scores_df,
|
39 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
def restart_space():
|
43 |
+
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
try:
|
46 |
+
print(EVAL_REQUESTS_PATH)
|
47 |
+
snapshot_download(
|
48 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
49 |
+
)
|
50 |
+
except Exception:
|
51 |
+
restart_space()
|
52 |
+
try:
|
53 |
+
print(EVAL_RESULTS_PATH)
|
54 |
+
snapshot_download(
|
55 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
56 |
+
)
|
57 |
+
except Exception:
|
58 |
+
restart_space()
|
59 |
|
|
|
|
|
60 |
|
61 |
+
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
62 |
+
if REPO_ID == "upstage/open-ko-llm-leaderboard": # update only when it's from real leaderboard
|
63 |
+
update_collections(original_df.copy())
|
64 |
+
leaderboard_df = original_df.copy()
|
65 |
|
66 |
+
plot_df = create_plot_df(create_scores_df(raw_data))
|
67 |
|
68 |
(
|
69 |
finished_eval_queue_df,
|
|
|
72 |
failed_eval_queue_df,
|
73 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Searching and filtering
|
77 |
+
def update_table(
|
78 |
+
hidden_df: pd.DataFrame,
|
79 |
+
columns: list,
|
80 |
+
type_query: list,
|
81 |
+
precision_query: str,
|
82 |
+
size_query: list,
|
83 |
+
show_deleted: bool,
|
84 |
+
show_merges: bool,
|
85 |
+
show_flagged: bool,
|
86 |
+
query: str,
|
87 |
+
):
|
88 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, show_merges, show_flagged)
|
89 |
+
filtered_df = filter_queries(query, filtered_df)
|
90 |
df = select_columns(filtered_df, columns)
|
|
|
91 |
return df
|
92 |
|
93 |
+
|
94 |
+
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
95 |
+
query = request.query_params.get("query") or ""
|
96 |
+
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
97 |
+
|
98 |
+
|
99 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
100 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
101 |
|
102 |
+
|
103 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
104 |
always_here_cols = [
|
105 |
AutoEvalColumn.model_type_symbol.name,
|
|
|
111 |
]
|
112 |
return filtered_df
|
113 |
|
114 |
+
|
115 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
116 |
+
"""Added by Abishek"""
|
117 |
+
final_df = []
|
118 |
+
if query != "":
|
119 |
+
queries = [q.strip() for q in query.split(";")]
|
120 |
+
for _q in queries:
|
121 |
+
_q = _q.strip()
|
122 |
+
if _q != "":
|
123 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
124 |
+
if len(temp_filtered_df) > 0:
|
125 |
+
final_df.append(temp_filtered_df)
|
126 |
+
if len(final_df) > 0:
|
127 |
+
filtered_df = pd.concat(final_df)
|
128 |
+
filtered_df = filtered_df.drop_duplicates(
|
129 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
130 |
+
)
|
131 |
+
|
132 |
+
return filtered_df
|
133 |
+
|
134 |
|
135 |
def filter_models(
|
136 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
137 |
) -> pd.DataFrame:
|
138 |
# Show all models
|
139 |
if show_deleted:
|
|
|
141 |
else: # Show only still on the hub models
|
142 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
143 |
|
144 |
+
if not show_merges:
|
145 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
146 |
+
|
147 |
+
if not show_flagged:
|
148 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
149 |
+
|
150 |
type_emoji = [t[0] for t in type_query]
|
151 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
152 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
153 |
|
154 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
155 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
158 |
|
159 |
return filtered_df
|
160 |
|
161 |
+
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False, False)
|
162 |
|
163 |
demo = gr.Blocks(css=custom_css)
|
164 |
with demo:
|
|
|
171 |
with gr.Column():
|
172 |
with gr.Row():
|
173 |
search_bar = gr.Textbox(
|
174 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
175 |
show_label=False,
|
176 |
elem_id="search-bar",
|
177 |
)
|
178 |
with gr.Row():
|
179 |
shown_columns = gr.CheckboxGroup(
|
180 |
choices=[
|
181 |
+
c.name
|
182 |
+
for c in fields(AutoEvalColumn)
|
183 |
+
if not c.hidden and not c.never_hidden and not c.dummy
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
],
|
185 |
value=[
|
186 |
+
c.name
|
187 |
+
for c in fields(AutoEvalColumn)
|
188 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
],
|
190 |
label="Select columns to show",
|
191 |
elem_id="column-select",
|
|
|
193 |
)
|
194 |
with gr.Row():
|
195 |
deleted_models_visibility = gr.Checkbox(
|
196 |
+
value=False, label="Show private/deleted models", interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
)
|
198 |
+
merged_models_visibility = gr.Checkbox(
|
199 |
+
value=False, label="Show merges", interactive=True
|
|
|
|
|
|
|
|
|
200 |
)
|
201 |
+
flagged_models_visibility = gr.Checkbox(
|
202 |
+
value=False, label="Show flagged models", interactive=True
|
|
|
|
|
|
|
|
|
203 |
)
|
204 |
+
with gr.Column(min_width=320):
|
205 |
+
#with gr.Box(elem_id="box-filter"):
|
206 |
+
filter_columns_type = gr.CheckboxGroup(
|
207 |
+
label="Model types",
|
208 |
+
choices=[t.to_str() for t in ModelType],
|
209 |
+
value=[t.to_str() for t in ModelType],
|
210 |
+
interactive=True,
|
211 |
+
elem_id="filter-columns-type",
|
212 |
+
)
|
213 |
+
filter_columns_precision = gr.CheckboxGroup(
|
214 |
+
label="Precision",
|
215 |
+
choices=[i.value.name for i in Precision],
|
216 |
+
value=[i.value.name for i in Precision],
|
217 |
+
interactive=True,
|
218 |
+
elem_id="filter-columns-precision",
|
219 |
+
)
|
220 |
+
filter_columns_size = gr.CheckboxGroup(
|
221 |
+
label="Model sizes (in billions of parameters)",
|
222 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
223 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
224 |
+
interactive=True,
|
225 |
+
elem_id="filter-columns-size",
|
226 |
+
)
|
227 |
|
228 |
leaderboard_table = gr.components.Dataframe(
|
229 |
value=leaderboard_df[
|
230 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
231 |
+ shown_columns.value
|
232 |
+ [AutoEvalColumn.dummy.name]
|
233 |
],
|
234 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
|
|
|
|
|
|
|
|
|
|
235 |
datatype=TYPES,
|
|
|
236 |
elem_id="leaderboard-table",
|
237 |
interactive=False,
|
238 |
visible=True,
|
239 |
+
#column_widths=["2%", "33%"]
|
240 |
)
|
241 |
|
242 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
243 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
244 |
+
value=original_df[COLS],
|
245 |
headers=COLS,
|
246 |
datatype=TYPES,
|
|
|
247 |
visible=False,
|
248 |
)
|
249 |
search_bar.submit(
|
250 |
update_table,
|
251 |
[
|
252 |
hidden_leaderboard_table_for_search,
|
|
|
253 |
shown_columns,
|
254 |
filter_columns_type,
|
255 |
filter_columns_precision,
|
256 |
filter_columns_size,
|
257 |
deleted_models_visibility,
|
258 |
+
merged_models_visibility,
|
259 |
+
flagged_models_visibility,
|
260 |
search_bar,
|
261 |
],
|
262 |
leaderboard_table,
|
263 |
)
|
264 |
+
|
265 |
+
# Define a hidden component that will trigger a reload only if a query parameter has be set
|
266 |
+
hidden_search_bar = gr.Textbox(value="", visible=False)
|
267 |
+
hidden_search_bar.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
update_table,
|
269 |
[
|
270 |
hidden_leaderboard_table_for_search,
|
|
|
271 |
shown_columns,
|
272 |
filter_columns_type,
|
273 |
filter_columns_precision,
|
274 |
filter_columns_size,
|
275 |
deleted_models_visibility,
|
276 |
+
merged_models_visibility,
|
277 |
+
flagged_models_visibility,
|
278 |
search_bar,
|
279 |
],
|
280 |
leaderboard_table,
|
|
|
281 |
)
|
282 |
+
# Check query parameter once at startup and update search bar + hidden component
|
283 |
+
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
284 |
+
|
285 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, merged_models_visibility, flagged_models_visibility]:
|
286 |
+
selector.change(
|
287 |
+
update_table,
|
288 |
+
[
|
289 |
+
hidden_leaderboard_table_for_search,
|
290 |
+
shown_columns,
|
291 |
+
filter_columns_type,
|
292 |
+
filter_columns_precision,
|
293 |
+
filter_columns_size,
|
294 |
+
deleted_models_visibility,
|
295 |
+
merged_models_visibility,
|
296 |
+
flagged_models_visibility,
|
297 |
+
search_bar,
|
298 |
+
],
|
299 |
leaderboard_table,
|
300 |
+
queue=True,
|
301 |
+
)
|
302 |
+
|
303 |
+
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column():
|
306 |
+
chart = create_metric_plot_obj(
|
307 |
+
plot_df,
|
308 |
+
[AutoEvalColumn.average.name],
|
309 |
+
title="Average of Top Scores Over Time (from last update)",
|
310 |
+
)
|
311 |
+
gr.Plot(value=chart, min_width=500)
|
312 |
+
with gr.Column():
|
313 |
+
chart = create_metric_plot_obj(
|
314 |
+
plot_df,
|
315 |
+
BENCHMARK_COLS,
|
316 |
+
title="Top Scores Over Time (from last update)",
|
317 |
+
)
|
318 |
+
gr.Plot(value=chart, min_width=500)
|
319 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
320 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
321 |
+
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
322 |
|
323 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
324 |
with gr.Column():
|
|
|
335 |
value=finished_eval_queue_df,
|
336 |
headers=EVAL_COLS,
|
337 |
datatype=EVAL_TYPES,
|
338 |
+
row_count=5,
|
339 |
)
|
340 |
with gr.Accordion(
|
341 |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
|
|
346 |
value=running_eval_queue_df,
|
347 |
headers=EVAL_COLS,
|
348 |
datatype=EVAL_TYPES,
|
349 |
+
row_count=5,
|
350 |
)
|
351 |
|
352 |
with gr.Accordion(
|
|
|
358 |
value=pending_eval_queue_df,
|
359 |
headers=EVAL_COLS,
|
360 |
datatype=EVAL_TYPES,
|
361 |
+
row_count=5,
|
362 |
)
|
363 |
with gr.Accordion(
|
364 |
f"β Failed Evaluations ({len(failed_eval_queue_df)})",
|
|
|
369 |
value=failed_eval_queue_df,
|
370 |
headers=EVAL_COLS,
|
371 |
datatype=EVAL_TYPES,
|
372 |
+
row_count=5,
|
373 |
)
|
374 |
with gr.Row():
|
375 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
|
|
377 |
with gr.Row():
|
378 |
with gr.Column():
|
379 |
model_name_textbox = gr.Textbox(label="Model name")
|
380 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
381 |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
382 |
model_type = gr.Dropdown(
|
383 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
|
|
|
|
|
|
|
|
|
|
384 |
label="Model type",
|
385 |
multiselect=False,
|
386 |
+
value=ModelType.IFT.to_str(" : "),
|
387 |
interactive=True,
|
388 |
)
|
389 |
|
390 |
with gr.Column():
|
391 |
precision = gr.Dropdown(
|
392 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
label="Precision",
|
394 |
multiselect=False,
|
395 |
value="float16",
|
396 |
interactive=True,
|
397 |
)
|
398 |
weight_type = gr.Dropdown(
|
399 |
+
choices=[i.value.name for i in WeightType],
|
400 |
label="Weights type",
|
401 |
multiselect=False,
|
402 |
value="Original",
|
|
|
425 |
citation_button = gr.Textbox(
|
426 |
value=CITATION_BUTTON_TEXT,
|
427 |
label=CITATION_BUTTON_LABEL,
|
428 |
+
lines=20,
|
429 |
elem_id="citation-button",
|
430 |
+
show_copy_button=True,
|
431 |
+
)
|
432 |
gr.HTML(BOTTOM_LOGO)
|
433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
scheduler = BackgroundScheduler()
|
435 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
436 |
scheduler.start()
|
437 |
+
|
438 |
+
# Both launches the space and its CI
|
439 |
+
configure_space_ci(
|
440 |
+
demo.queue(default_concurrency_limit=40),
|
441 |
+
trusted_authors=[], # add manually trusted authors
|
442 |
+
private="True", # ephemeral spaces will have same visibility as the main space. Otherwise, set to `True` or `False` explicitly.
|
443 |
+
variables={}, # We overwrite HF_HOME as tmp CI spaces will have no cache
|
444 |
+
secrets=["HF_TOKEN", "H4_TOKEN"], # which secret do I want to copy from the main space? Can be a `List[str]`.
|
445 |
+
hardware=None, # "cpu-basic" by default. Otherwise set to "auto" to have same hardware as the main space or any valid string value.
|
446 |
+
storage=None, # no storage by default. Otherwise set to "auto" to have same storage as the main space or any valid string value.
|
447 |
+
).launch()
|
model_info_cache.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:337f1fb80e92327e7c7b130c03617439f7923e3f7c5383f5abb07e017ef9cae3
|
3 |
-
size 715983
|
|
|
|
|
|
|
|
model_size_cache.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:64d63b51e6f5d6dd985b44ef6ddf513d9a7a138e734d77ae7382fd7a49a137ea
|
3 |
-
size 20652
|
|
|
|
|
|
|
|
models_backlinks.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
models = ['upstage/Llama-2-70b-instruct-v2', 'upstage/Llama-2-70b-instruct', 'upstage/llama-65b-instruct', 'upstage/llama-65b-instruct', 'upstage/llama-30b-instruct-2048', 'upstage/llama-30b-instruct', 'baseline']
|
|
|
|
package-lock.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "open_llm_leaderboard",
|
3 |
+
"lockfileVersion": 3,
|
4 |
+
"requires": true,
|
5 |
+
"packages": {}
|
6 |
+
}
|
requirements.txt
CHANGED
@@ -1,71 +1,18 @@
|
|
1 |
-
accelerate==0.23.0
|
2 |
-
aiofiles==23.1.0
|
3 |
-
aiohttp==3.8.4
|
4 |
-
aiosignal==1.3.1
|
5 |
-
altair==4.2.2
|
6 |
-
anyio==3.6.2
|
7 |
APScheduler==3.10.1
|
8 |
-
|
9 |
-
attrs==23.1.0
|
10 |
-
certifi==2022.12.7
|
11 |
-
charset-normalizer==3.1.0
|
12 |
click==8.1.3
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
fastapi==0.95.1
|
18 |
-
ffmpy==0.3.0
|
19 |
-
filelock==3.11.0
|
20 |
-
fonttools==4.39.3
|
21 |
-
frozenlist==1.3.3
|
22 |
-
fsspec==2023.4.0
|
23 |
-
gradio==3.43.2
|
24 |
-
gradio-client==0.5.0
|
25 |
-
h11==0.14.0
|
26 |
-
httpcore==0.17.0
|
27 |
-
httpx==0.24.0
|
28 |
-
huggingface-hub==0.16.4
|
29 |
-
idna==3.4
|
30 |
-
Jinja2==3.1.2
|
31 |
-
jsonschema==4.17.3
|
32 |
-
kiwisolver==1.4.4
|
33 |
-
linkify-it-py==2.0.0
|
34 |
-
markdown-it-py==2.2.0
|
35 |
-
MarkupSafe==2.1.2
|
36 |
matplotlib==3.7.1
|
37 |
-
mdit-py-plugins==0.3.3
|
38 |
-
mdurl==0.1.2
|
39 |
-
multidict==6.0.4
|
40 |
numpy==1.24.2
|
41 |
-
orjson==3.8.10
|
42 |
-
packaging==23.1
|
43 |
pandas==2.0.0
|
44 |
-
Pillow==9.5.0
|
45 |
plotly==5.14.1
|
46 |
-
pyarrow==11.0.0
|
47 |
-
pydantic==1.10.7
|
48 |
-
pydub==0.25.1
|
49 |
-
pyparsing==3.0.9
|
50 |
-
pyrsistent==0.19.3
|
51 |
python-dateutil==2.8.2
|
52 |
-
python-multipart==0.0.6
|
53 |
-
pytz==2023.3
|
54 |
-
pytz-deprecation-shim==0.1.0.post0
|
55 |
-
PyYAML==6.0
|
56 |
requests==2.28.2
|
57 |
-
|
58 |
-
six==1.16.0
|
59 |
-
sniffio==1.3.0
|
60 |
-
starlette==0.26.1
|
61 |
-
toolz==0.12.0
|
62 |
tqdm==4.65.0
|
63 |
-
transformers==4.
|
64 |
-
|
65 |
-
|
66 |
-
tzlocal==4.3
|
67 |
-
uc-micro-py==1.0.1
|
68 |
-
urllib3==1.26.15
|
69 |
-
uvicorn==0.21.1
|
70 |
-
websockets==11.0.1
|
71 |
-
yarl==1.8.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
APScheduler==3.10.1
|
2 |
+
black==23.11.0
|
|
|
|
|
|
|
3 |
click==8.1.3
|
4 |
+
datasets==2.14.5
|
5 |
+
gradio==4.9.0
|
6 |
+
gradio_client==0.7.2
|
7 |
+
huggingface-hub>=0.18.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
matplotlib==3.7.1
|
|
|
|
|
|
|
9 |
numpy==1.24.2
|
|
|
|
|
10 |
pandas==2.0.0
|
|
|
11 |
plotly==5.14.1
|
|
|
|
|
|
|
|
|
|
|
12 |
python-dateutil==2.8.2
|
|
|
|
|
|
|
|
|
13 |
requests==2.28.2
|
14 |
+
sentencepiece
|
|
|
|
|
|
|
|
|
15 |
tqdm==4.65.0
|
16 |
+
transformers==4.36.0
|
17 |
+
tokenizers>=0.15.0
|
18 |
+
gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/[email protected] # CI !!!
|
|
|
|
|
|
|
|
|
|
|
|
scripts/create_request_file.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pprint
|
4 |
+
import re
|
5 |
+
from datetime import datetime, timezone
|
6 |
+
|
7 |
+
import click
|
8 |
+
from colorama import Fore
|
9 |
+
from huggingface_hub import HfApi, snapshot_download
|
10 |
+
|
11 |
+
EVAL_REQUESTS_PATH = "eval-queue"
|
12 |
+
QUEUE_REPO = "open-ko-llm-leaderboard/requests"
|
13 |
+
|
14 |
+
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
|
15 |
+
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
|
16 |
+
weight_types = ("Original", "Delta", "Adapter")
|
17 |
+
|
18 |
+
|
19 |
+
def get_model_size(model_info, precision: str):
|
20 |
+
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
21 |
+
try:
|
22 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
23 |
+
except (AttributeError, TypeError):
|
24 |
+
try:
|
25 |
+
size_match = re.search(size_pattern, model_info.modelId.lower())
|
26 |
+
model_size = size_match.group(0)
|
27 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
28 |
+
except AttributeError:
|
29 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
30 |
+
|
31 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
32 |
+
model_size = size_factor * model_size
|
33 |
+
return model_size
|
34 |
+
|
35 |
+
|
36 |
+
def main():
|
37 |
+
api = HfApi()
|
38 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
39 |
+
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
|
40 |
+
|
41 |
+
model_name = click.prompt("Enter model name")
|
42 |
+
revision = click.prompt("Enter revision", default="main")
|
43 |
+
precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
|
44 |
+
model_type = click.prompt("Enter model type", type=click.Choice(model_types))
|
45 |
+
weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
|
46 |
+
base_model = click.prompt("Enter base model", default="")
|
47 |
+
status = click.prompt("Enter status", default="FINISHED")
|
48 |
+
|
49 |
+
try:
|
50 |
+
model_info = api.model_info(repo_id=model_name, revision=revision)
|
51 |
+
except Exception as e:
|
52 |
+
print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
|
53 |
+
return 1
|
54 |
+
|
55 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
56 |
+
|
57 |
+
try:
|
58 |
+
license = model_info.cardData["license"]
|
59 |
+
except Exception:
|
60 |
+
license = "?"
|
61 |
+
|
62 |
+
eval_entry = {
|
63 |
+
"model": model_name,
|
64 |
+
"base_model": base_model,
|
65 |
+
"revision": revision,
|
66 |
+
"private": False,
|
67 |
+
"precision": precision,
|
68 |
+
"weight_type": weight_type,
|
69 |
+
"status": status,
|
70 |
+
"submitted_time": current_time,
|
71 |
+
"model_type": model_type,
|
72 |
+
"likes": model_info.likes,
|
73 |
+
"params": model_size,
|
74 |
+
"license": license,
|
75 |
+
}
|
76 |
+
|
77 |
+
user_name = ""
|
78 |
+
model_path = model_name
|
79 |
+
if "/" in model_name:
|
80 |
+
user_name = model_name.split("/")[0]
|
81 |
+
model_path = model_name.split("/")[1]
|
82 |
+
|
83 |
+
pprint.pprint(eval_entry)
|
84 |
+
|
85 |
+
if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
|
86 |
+
click.echo("continuing...")
|
87 |
+
|
88 |
+
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
89 |
+
os.makedirs(out_dir, exist_ok=True)
|
90 |
+
out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
|
91 |
+
|
92 |
+
with open(out_path, "w") as f:
|
93 |
+
f.write(json.dumps(eval_entry))
|
94 |
+
|
95 |
+
api.upload_file(
|
96 |
+
path_or_fileobj=out_path,
|
97 |
+
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
|
98 |
+
repo_id=QUEUE_REPO,
|
99 |
+
repo_type="dataset",
|
100 |
+
commit_message=f"Add {model_name} to eval queue",
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
click.echo("aborting...")
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
main()
|
scripts/update_request_files.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
import pprint
|
5 |
+
import re
|
6 |
+
from datetime import datetime, timezone
|
7 |
+
|
8 |
+
import click
|
9 |
+
from colorama import Fore
|
10 |
+
from huggingface_hub import HfApi, snapshot_download
|
11 |
+
from huggingface_hub.hf_api import ModelInfo
|
12 |
+
|
13 |
+
API = HfApi()
|
14 |
+
|
15 |
+
|
16 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
17 |
+
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
18 |
+
try:
|
19 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
20 |
+
except (AttributeError, TypeError ):
|
21 |
+
try:
|
22 |
+
size_match = re.search(size_pattern, model_info.modelId.split("/")[-1].lower())
|
23 |
+
model_size = size_match.group(0)
|
24 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
25 |
+
except AttributeError:
|
26 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
27 |
+
|
28 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.split("/")[-1].lower()) else 1
|
29 |
+
model_size = size_factor * model_size
|
30 |
+
return model_size
|
31 |
+
|
32 |
+
|
33 |
+
def update_request_files(requests_path):
|
34 |
+
request_files = os.path.join(
|
35 |
+
requests_path, "*/*.json"
|
36 |
+
)
|
37 |
+
request_files = glob.glob(request_files)
|
38 |
+
|
39 |
+
request_files = sorted(request_files, reverse=True)
|
40 |
+
for tmp_request_file in request_files:
|
41 |
+
with open(tmp_request_file, "r") as f:
|
42 |
+
req_content = json.load(f)
|
43 |
+
new_req_content = add_model_info(req_content)
|
44 |
+
|
45 |
+
# if new content is different, update the file
|
46 |
+
if new_req_content != req_content:
|
47 |
+
with open(tmp_request_file, "w") as f:
|
48 |
+
f.write(json.dumps(new_req_content, indent=4))
|
49 |
+
|
50 |
+
def add_model_info(entry):
|
51 |
+
|
52 |
+
model = entry["model"]
|
53 |
+
revision = entry["revision"]
|
54 |
+
|
55 |
+
try:
|
56 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
57 |
+
except Exception:
|
58 |
+
print(f"Could not get model information for {model} revision {revision}")
|
59 |
+
return entry
|
60 |
+
|
61 |
+
new_entry = entry.copy()
|
62 |
+
|
63 |
+
model_size = get_model_size(model_info=model_info, precision='float16')
|
64 |
+
new_entry["params"] = model_size
|
65 |
+
|
66 |
+
new_entry["likes"] = model_info.likes
|
67 |
+
|
68 |
+
# Were the model card and license filled?
|
69 |
+
try:
|
70 |
+
license = model_info.cardData["license"]
|
71 |
+
new_entry["license"] = license
|
72 |
+
except Exception:
|
73 |
+
print(f"No license for {model} revision {revision}")
|
74 |
+
|
75 |
+
print(json.dumps(new_entry, indent=4))
|
76 |
+
return new_entry
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
# update_request_files("/Users/sean/workspace/leaderboard/leaderboard-test-requests")
|
81 |
+
update_request_files("/Volumes/Data-case-sensitive/requests")
|
82 |
+
|
src/assets/hardcoded_evals.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
from src.display_models.utils import AutoEvalColumn, model_hyperlink
|
2 |
-
|
3 |
-
baseline = {
|
4 |
-
AutoEvalColumn.model.name: "<p>Baseline</p>",
|
5 |
-
AutoEvalColumn.revision.name: "N/A",
|
6 |
-
AutoEvalColumn.precision.name: None,
|
7 |
-
AutoEvalColumn.average.name: 25.0,
|
8 |
-
AutoEvalColumn.arc.name: 25.0,
|
9 |
-
AutoEvalColumn.hellaswag.name: 25.0,
|
10 |
-
AutoEvalColumn.mmlu.name: 25.0,
|
11 |
-
AutoEvalColumn.truthfulqa.name: 25.0,
|
12 |
-
AutoEvalColumn.dummy.name: "baseline",
|
13 |
-
AutoEvalColumn.model_type.name: "",
|
14 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/{assets/text_content.py β display/about.py}
RENAMED
@@ -1,4 +1,5 @@
|
|
1 |
-
from src.
|
|
|
2 |
|
3 |
TITLE = """<img src="https://upstage-open-ko-llm-leaderboard-logos.s3.ap-northeast-2.amazonaws.com/header_logo.png" style="width:30%;display:block;margin-left:auto;margin-right:auto">"""
|
4 |
BOTTOM_LOGO = """<img src="https://upstage-open-ko-llm-leaderboard-logos.s3.ap-northeast-2.amazonaws.com/footer_logo_1.png" style="width:50%;display:block;margin-left:auto;margin-right:auto">"""
|
@@ -20,7 +21,6 @@ While outstanding LLM models are being released competitively, most of them are
|
|
20 |
|
21 |
## Icons
|
22 |
{ModelType.PT.to_str(" : ")} model
|
23 |
-
{ModelType.FT.to_str(" : ")} model
|
24 |
{ModelType.IFT.to_str(" : ")} model
|
25 |
{ModelType.RL.to_str(" : ")} model
|
26 |
If there is no icon, it indicates that there is insufficient information about the model.
|
@@ -52,6 +52,11 @@ GPUs are provided by __[KT](https://cloud.kt.com/)__ for the evaluations.
|
|
52 |
If you still have questions, you can check our FAQ [here](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard/discussions/1)!
|
53 |
"""
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
EVALUATION_QUEUE_TEXT = f"""
|
56 |
# Evaluation Queue for the π Open Ko-LLM Leaderboard
|
57 |
Models added here will be automatically evaluated on the KT GPU cluster.
|
|
|
1 |
+
from src.display.utils import ModelType
|
2 |
+
|
3 |
|
4 |
TITLE = """<img src="https://upstage-open-ko-llm-leaderboard-logos.s3.ap-northeast-2.amazonaws.com/header_logo.png" style="width:30%;display:block;margin-left:auto;margin-right:auto">"""
|
5 |
BOTTOM_LOGO = """<img src="https://upstage-open-ko-llm-leaderboard-logos.s3.ap-northeast-2.amazonaws.com/footer_logo_1.png" style="width:50%;display:block;margin-left:auto;margin-right:auto">"""
|
|
|
21 |
|
22 |
## Icons
|
23 |
{ModelType.PT.to_str(" : ")} model
|
|
|
24 |
{ModelType.IFT.to_str(" : ")} model
|
25 |
{ModelType.RL.to_str(" : ")} model
|
26 |
If there is no icon, it indicates that there is insufficient information about the model.
|
|
|
52 |
If you still have questions, you can check our FAQ [here](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard/discussions/1)!
|
53 |
"""
|
54 |
|
55 |
+
|
56 |
+
FAQ_TEXT = """
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
EVALUATION_QUEUE_TEXT = f"""
|
61 |
# Evaluation Queue for the π Open Ko-LLM Leaderboard
|
62 |
Models added here will be automatically evaluated on the KT GPU cluster.
|
src/{assets β display}/css_html_js.py
RENAMED
@@ -1,5 +1,24 @@
|
|
1 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
.markdown-text {
|
4 |
font-size: 16px !important;
|
5 |
}
|
@@ -21,14 +40,6 @@ custom_css = """
|
|
21 |
transform: scale(1.3);
|
22 |
}
|
23 |
|
24 |
-
#leaderboard-table {
|
25 |
-
margin-top: 15px
|
26 |
-
}
|
27 |
-
|
28 |
-
#leaderboard-table-lite {
|
29 |
-
margin-top: 15px
|
30 |
-
}
|
31 |
-
|
32 |
#search-bar-table-box > div:first-child {
|
33 |
background: none;
|
34 |
border: none;
|
@@ -38,36 +49,11 @@ custom_css = """
|
|
38 |
padding: 0px;
|
39 |
}
|
40 |
|
41 |
-
/* Hides the final AutoEvalColumn */
|
42 |
-
#llm-benchmark-tab-table table td:last-child,
|
43 |
-
#llm-benchmark-tab-table table th:last-child {
|
44 |
-
display: none;
|
45 |
-
}
|
46 |
-
|
47 |
-
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
48 |
-
table td:first-child,
|
49 |
-
table th:first-child {
|
50 |
-
max-width: 400px;
|
51 |
-
overflow: auto;
|
52 |
-
white-space: nowrap;
|
53 |
-
}
|
54 |
-
|
55 |
.tab-buttons button {
|
56 |
font-size: 20px;
|
57 |
}
|
58 |
|
59 |
-
|
60 |
-
border-style: none !important;
|
61 |
-
box-shadow: none;
|
62 |
-
display: block;
|
63 |
-
margin-left: auto;
|
64 |
-
margin-right: auto;
|
65 |
-
max-width: 600px;
|
66 |
-
}
|
67 |
-
|
68 |
-
#scale-logo .download {
|
69 |
-
display: none;
|
70 |
-
}
|
71 |
#filter_type{
|
72 |
border: 0;
|
73 |
padding-left: 0;
|
|
|
1 |
custom_css = """
|
2 |
+
/* Hides the final AutoEvalColumn */
|
3 |
+
#llm-benchmark-tab-table table td:last-child,
|
4 |
+
#llm-benchmark-tab-table table th:last-child {
|
5 |
+
display: none;
|
6 |
+
}
|
7 |
|
8 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
9 |
+
table td:first-child,
|
10 |
+
table th:first-child {
|
11 |
+
max-width: 400px;
|
12 |
+
overflow: auto;
|
13 |
+
white-space: nowrap;
|
14 |
+
}
|
15 |
+
|
16 |
+
/* Full width space */
|
17 |
+
.gradio-container {
|
18 |
+
max-width: 95%!important;
|
19 |
+
}
|
20 |
+
|
21 |
+
/* Text style and margins */
|
22 |
.markdown-text {
|
23 |
font-size: 16px !important;
|
24 |
}
|
|
|
40 |
transform: scale(1.3);
|
41 |
}
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
#search-bar-table-box > div:first-child {
|
44 |
background: none;
|
45 |
border: none;
|
|
|
49 |
padding: 0px;
|
50 |
}
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
.tab-buttons button {
|
53 |
font-size: 20px;
|
54 |
}
|
55 |
|
56 |
+
/* Filters style */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
#filter_type{
|
58 |
border: 0;
|
59 |
padding-left: 0;
|
src/display/formatting.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime, timezone
|
3 |
+
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
from huggingface_hub.hf_api import ModelInfo
|
6 |
+
|
7 |
+
|
8 |
+
API = HfApi()
|
9 |
+
|
10 |
+
def model_hyperlink(link, model_name):
|
11 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
12 |
+
|
13 |
+
|
14 |
+
def make_clickable_model(model_name):
|
15 |
+
link = f"https://huggingface.co/{model_name}"
|
16 |
+
|
17 |
+
details_model_name = model_name.replace("/", "__")
|
18 |
+
details_link = f"https://huggingface.co/datasets/open-ko-llm-leaderboard/details_{details_model_name}"
|
19 |
+
|
20 |
+
return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "π")
|
21 |
+
|
22 |
+
|
23 |
+
def styled_error(error):
|
24 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
25 |
+
|
26 |
+
|
27 |
+
def styled_warning(warn):
|
28 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
29 |
+
|
30 |
+
|
31 |
+
def styled_message(message):
|
32 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
33 |
+
|
34 |
+
|
35 |
+
def has_no_nan_values(df, columns):
|
36 |
+
return df[columns].notna().all(axis=1)
|
37 |
+
|
38 |
+
|
39 |
+
def has_nan_values(df, columns):
|
40 |
+
return df[columns].isna().any(axis=1)
|
src/display/utils.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, make_dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
def fields(raw_class):
|
7 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class Task:
|
12 |
+
benchmark: str
|
13 |
+
metric: str
|
14 |
+
col_name: str
|
15 |
+
|
16 |
+
class Tasks(Enum):
|
17 |
+
arc = Task("ko_arc_challenge", "acc_norm", "Ko-ARC")
|
18 |
+
hellaswag = Task("ko_hellaswag", "acc_norm", "Ko-HellaSwag")
|
19 |
+
mmlu = Task("ko_mmlu", "acc", "Ko-MMLU")
|
20 |
+
truthfulqa = Task("ko_truthfulqa_mc", "mc2", "Ko-TruthfulQA")
|
21 |
+
commongen_v2 = Task("ko_commongen_v2", "acc_norm", "Ko-CommonGen V2")
|
22 |
+
|
23 |
+
# These classes are for user facing column names,
|
24 |
+
# to avoid having to change them all around the code
|
25 |
+
# when a modif is needed
|
26 |
+
@dataclass
|
27 |
+
class ColumnContent:
|
28 |
+
name: str
|
29 |
+
type: str
|
30 |
+
displayed_by_default: bool
|
31 |
+
hidden: bool = False
|
32 |
+
never_hidden: bool = False
|
33 |
+
dummy: bool = False
|
34 |
+
|
35 |
+
auto_eval_column_dict = []
|
36 |
+
# Init
|
37 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
38 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
39 |
+
#Scores
|
40 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)])
|
41 |
+
for task in Tasks:
|
42 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
43 |
+
# Model information
|
44 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
45 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
46 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
47 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
48 |
+
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
|
49 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
50 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
51 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
52 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
53 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
54 |
+
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, False)])
|
55 |
+
# Dummy column for the search bar (hidden by the custom CSS)
|
56 |
+
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
57 |
+
|
58 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
59 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
60 |
+
|
61 |
+
@dataclass(frozen=True)
|
62 |
+
class EvalQueueColumn: # Queue column
|
63 |
+
model = ColumnContent("model", "markdown", True)
|
64 |
+
revision = ColumnContent("revision", "str", True)
|
65 |
+
private = ColumnContent("private", "bool", True)
|
66 |
+
precision = ColumnContent("precision", "str", True)
|
67 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
68 |
+
status = ColumnContent("status", "str", True)
|
69 |
+
|
70 |
+
# Define the human baselines
|
71 |
+
human_baseline_row = {
|
72 |
+
AutoEvalColumn.model.name: "<p>Human performance</p>",
|
73 |
+
}
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class ModelDetails:
|
77 |
+
name: str
|
78 |
+
symbol: str = "" # emoji, only for the model type
|
79 |
+
|
80 |
+
|
81 |
+
class ModelType(Enum):
|
82 |
+
PT = ModelDetails(name="pretrained", symbol="π’")
|
83 |
+
# FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
84 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
85 |
+
RL = ModelDetails(name="RL-tuned", symbol="π¦")
|
86 |
+
Unknown = ModelDetails(name="", symbol="?")
|
87 |
+
|
88 |
+
def to_str(self, separator=" "):
|
89 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
90 |
+
|
91 |
+
@staticmethod
|
92 |
+
def from_str(type):
|
93 |
+
# if "fine-tuned" in type or "πΆ" in type:
|
94 |
+
# return ModelType.FT
|
95 |
+
if "pretrained" in type or "π’" in type:
|
96 |
+
return ModelType.PT
|
97 |
+
if "RL-tuned" in type or "π¦" in type:
|
98 |
+
return ModelType.RL
|
99 |
+
if "instruction-tuned" in type or "β" in type:
|
100 |
+
return ModelType.IFT
|
101 |
+
return ModelType.Unknown
|
102 |
+
|
103 |
+
class WeightType(Enum):
|
104 |
+
Adapter = ModelDetails("Adapter")
|
105 |
+
Original = ModelDetails("Original")
|
106 |
+
Delta = ModelDetails("Delta")
|
107 |
+
|
108 |
+
class Precision(Enum):
|
109 |
+
float16 = ModelDetails("float16")
|
110 |
+
# bfloat16 = ModelDetails("bfloat16")
|
111 |
+
# qt_8bit = ModelDetails("8bit")
|
112 |
+
# qt_4bit = ModelDetails("4bit")
|
113 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
114 |
+
Unknown = ModelDetails("?")
|
115 |
+
|
116 |
+
def from_str(precision):
|
117 |
+
if precision in ["torch.float16", "float16"]:
|
118 |
+
return Precision.float16
|
119 |
+
if precision in ["torch.bfloat16", "bfloat16"]:
|
120 |
+
return Precision.bfloat16
|
121 |
+
if precision in ["8bit"]:
|
122 |
+
return Precision.qt_8bit
|
123 |
+
if precision in ["4bit"]:
|
124 |
+
return Precision.qt_4bit
|
125 |
+
if precision in ["GPTQ", "None"]:
|
126 |
+
return Precision.qt_GPTQ
|
127 |
+
return Precision.Unknown
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
# Column selection
|
133 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
134 |
+
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
135 |
+
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
136 |
+
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
137 |
+
|
138 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
139 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
140 |
+
|
141 |
+
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
142 |
+
|
143 |
+
NUMERIC_INTERVALS = {
|
144 |
+
"Unknown": pd.Interval(-1, 0, closed="right"),
|
145 |
+
"0~3B": pd.Interval(0, 3, closed="right"),
|
146 |
+
"3~7B": pd.Interval(3, 7.3, closed="right"),
|
147 |
+
"7~13B": pd.Interval(7.3, 13, closed="right"),
|
148 |
+
"13~35B": pd.Interval(13, 35, closed="right"),
|
149 |
+
"35~60B": pd.Interval(35, 60, closed="right"),
|
150 |
+
"60B+": pd.Interval(60, 10000, closed="right"),
|
151 |
+
}
|
src/display_models/get_model_metadata.py
DELETED
@@ -1,167 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
import re
|
5 |
-
import pickle
|
6 |
-
from typing import List
|
7 |
-
|
8 |
-
import huggingface_hub
|
9 |
-
from huggingface_hub import HfApi
|
10 |
-
from tqdm import tqdm
|
11 |
-
from transformers import AutoModel, AutoConfig
|
12 |
-
from accelerate import init_empty_weights
|
13 |
-
|
14 |
-
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
15 |
-
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
16 |
-
from src.display_models.utils import AutoEvalColumn, model_hyperlink
|
17 |
-
|
18 |
-
api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
19 |
-
|
20 |
-
|
21 |
-
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
22 |
-
# load cache from disk
|
23 |
-
try:
|
24 |
-
with open("model_info_cache.pkl", "rb") as f:
|
25 |
-
model_info_cache = pickle.load(f)
|
26 |
-
except (EOFError, FileNotFoundError):
|
27 |
-
model_info_cache = {}
|
28 |
-
try:
|
29 |
-
with open("model_size_cache.pkl", "rb") as f:
|
30 |
-
model_size_cache = pickle.load(f)
|
31 |
-
except (EOFError, FileNotFoundError):
|
32 |
-
model_size_cache = {}
|
33 |
-
|
34 |
-
for model_data in tqdm(leaderboard_data):
|
35 |
-
model_name = model_data["model_name_for_query"]
|
36 |
-
|
37 |
-
if model_name in model_info_cache:
|
38 |
-
model_info = model_info_cache[model_name]
|
39 |
-
else:
|
40 |
-
try:
|
41 |
-
model_info = api.model_info(model_name)
|
42 |
-
model_info_cache[model_name] = model_info
|
43 |
-
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
44 |
-
print("Repo not found!", model_name)
|
45 |
-
model_data[AutoEvalColumn.license.name] = None
|
46 |
-
model_data[AutoEvalColumn.likes.name] = None
|
47 |
-
if model_name not in model_size_cache:
|
48 |
-
model_size_cache[model_name] = get_model_size(model_name, None)
|
49 |
-
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
50 |
-
|
51 |
-
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
52 |
-
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
53 |
-
if model_name not in model_size_cache:
|
54 |
-
model_size_cache[model_name] = get_model_size(model_name, model_info)
|
55 |
-
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
56 |
-
|
57 |
-
# save cache to disk in pickle format
|
58 |
-
with open("model_info_cache.pkl", "wb") as f:
|
59 |
-
pickle.dump(model_info_cache, f)
|
60 |
-
with open("model_size_cache.pkl", "wb") as f:
|
61 |
-
pickle.dump(model_size_cache, f)
|
62 |
-
|
63 |
-
|
64 |
-
def get_model_license(model_info):
|
65 |
-
try:
|
66 |
-
return model_info.cardData["license"]
|
67 |
-
except Exception:
|
68 |
-
return "?"
|
69 |
-
|
70 |
-
|
71 |
-
def get_model_likes(model_info):
|
72 |
-
return model_info.likes
|
73 |
-
|
74 |
-
|
75 |
-
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
76 |
-
|
77 |
-
|
78 |
-
def get_model_size(model_name, model_info):
|
79 |
-
# In billions
|
80 |
-
try:
|
81 |
-
return round(model_info.safetensors["total"] / 1e9, 3)
|
82 |
-
except AttributeError:
|
83 |
-
try:
|
84 |
-
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False)
|
85 |
-
with init_empty_weights():
|
86 |
-
model = AutoModel.from_config(config, trust_remote_code=False)
|
87 |
-
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
|
88 |
-
except (EnvironmentError, ValueError): # model config not found, likely private
|
89 |
-
try:
|
90 |
-
size_match = re.search(size_pattern, model_name.lower())
|
91 |
-
size = size_match.group(0)
|
92 |
-
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
93 |
-
except AttributeError:
|
94 |
-
return 0
|
95 |
-
|
96 |
-
|
97 |
-
def get_model_type(leaderboard_data: List[dict]):
|
98 |
-
for model_data in leaderboard_data:
|
99 |
-
request_files = os.path.join(
|
100 |
-
"eval-queue",
|
101 |
-
model_data["model_name_for_query"] + "_eval_request_*" + ".json",
|
102 |
-
)
|
103 |
-
request_files = glob.glob(request_files)
|
104 |
-
|
105 |
-
# Select correct request file (precision)
|
106 |
-
request_file = ""
|
107 |
-
if len(request_files) == 1:
|
108 |
-
request_file = request_files[0]
|
109 |
-
elif len(request_files) > 1:
|
110 |
-
request_files = sorted(request_files, reverse=True)
|
111 |
-
for tmp_request_file in request_files:
|
112 |
-
with open(tmp_request_file, "r") as f:
|
113 |
-
req_content = json.load(f)
|
114 |
-
if (
|
115 |
-
req_content["status"] == "FINISHED"
|
116 |
-
and req_content["precision"] == model_data["Precision"].split(".")[-1]
|
117 |
-
):
|
118 |
-
request_file = tmp_request_file
|
119 |
-
|
120 |
-
try:
|
121 |
-
with open(request_file, "r") as f:
|
122 |
-
request = json.load(f)
|
123 |
-
model_type = model_type_from_str(request["model_type"])
|
124 |
-
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
125 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol # + ("πΊ" if is_delta else "")
|
126 |
-
except Exception:
|
127 |
-
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA:
|
128 |
-
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[
|
129 |
-
model_data["model_name_for_query"]
|
130 |
-
].value.name
|
131 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[
|
132 |
-
model_data["model_name_for_query"]
|
133 |
-
].value.symbol # + ("πΊ" if is_delta else "")
|
134 |
-
else:
|
135 |
-
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
|
136 |
-
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol
|
137 |
-
|
138 |
-
|
139 |
-
def flag_models(leaderboard_data: List[dict]):
|
140 |
-
for model_data in leaderboard_data:
|
141 |
-
if model_data["model_name_for_query"] in FLAGGED_MODELS:
|
142 |
-
issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1]
|
143 |
-
issue_link = model_hyperlink(
|
144 |
-
FLAGGED_MODELS[model_data["model_name_for_query"]],
|
145 |
-
f"See discussion #{issue_num}",
|
146 |
-
)
|
147 |
-
model_data[
|
148 |
-
AutoEvalColumn.model.name
|
149 |
-
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
150 |
-
|
151 |
-
|
152 |
-
def remove_forbidden_models(leaderboard_data: List[dict]):
|
153 |
-
indices_to_remove = []
|
154 |
-
for ix, model in enumerate(leaderboard_data):
|
155 |
-
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
|
156 |
-
indices_to_remove.append(ix)
|
157 |
-
|
158 |
-
for ix in reversed(indices_to_remove):
|
159 |
-
leaderboard_data.pop(ix)
|
160 |
-
return leaderboard_data
|
161 |
-
|
162 |
-
|
163 |
-
def apply_metadata(leaderboard_data: List[dict]):
|
164 |
-
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
165 |
-
get_model_type(leaderboard_data)
|
166 |
-
get_model_infos_from_hub(leaderboard_data)
|
167 |
-
flag_models(leaderboard_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display_models/model_metadata_flags.py
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
# Models which have been flagged by users as being problematic for a reason or another
|
2 |
-
# (Model name to forum discussion link)
|
3 |
-
FLAGGED_MODELS = {
|
4 |
-
}
|
5 |
-
|
6 |
-
# Models which have been requested by orgs to not be submitted on the leaderboard
|
7 |
-
DO_NOT_SUBMIT_MODELS = [
|
8 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display_models/model_metadata_type.py
DELETED
@@ -1,553 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from enum import Enum
|
3 |
-
from typing import Dict
|
4 |
-
|
5 |
-
|
6 |
-
@dataclass
|
7 |
-
class ModelInfo:
|
8 |
-
name: str
|
9 |
-
symbol: str # emoji
|
10 |
-
|
11 |
-
|
12 |
-
class ModelType(Enum):
|
13 |
-
PT = ModelInfo(name="pretrained", symbol="π’")
|
14 |
-
FT = ModelInfo(name="fine-tuned", symbol="πΆ")
|
15 |
-
IFT = ModelInfo(name="instruction-tuned", symbol="β")
|
16 |
-
RL = ModelInfo(name="RL-tuned", symbol="π¦")
|
17 |
-
Unknown = ModelInfo(name="Unknown, add type to request file!", symbol="?")
|
18 |
-
|
19 |
-
def to_str(self, separator=" "):
|
20 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
21 |
-
|
22 |
-
|
23 |
-
MODEL_TYPE_METADATA: Dict[str, ModelType] = {
|
24 |
-
"tiiuae/falcon-180B": ModelType.PT,
|
25 |
-
"Qwen/Qwen-7B": ModelType.PT,
|
26 |
-
"Qwen/Qwen-7B-Chat": ModelType.RL,
|
27 |
-
"notstoic/PygmalionCoT-7b": ModelType.IFT,
|
28 |
-
"aisquared/dlite-v1-355m": ModelType.IFT,
|
29 |
-
"aisquared/dlite-v1-1_5b": ModelType.IFT,
|
30 |
-
"aisquared/dlite-v1-774m": ModelType.IFT,
|
31 |
-
"aisquared/dlite-v1-124m": ModelType.IFT,
|
32 |
-
"aisquared/chopt-2_7b": ModelType.IFT,
|
33 |
-
"aisquared/dlite-v2-124m": ModelType.IFT,
|
34 |
-
"aisquared/dlite-v2-774m": ModelType.IFT,
|
35 |
-
"aisquared/dlite-v2-1_5b": ModelType.IFT,
|
36 |
-
"aisquared/chopt-1_3b": ModelType.IFT,
|
37 |
-
"aisquared/dlite-v2-355m": ModelType.IFT,
|
38 |
-
"augtoma/qCammel-13": ModelType.IFT,
|
39 |
-
"Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload": ModelType.IFT,
|
40 |
-
"Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload": ModelType.IFT,
|
41 |
-
"TheBloke/alpaca-lora-65B-HF": ModelType.FT,
|
42 |
-
"TheBloke/tulu-7B-fp16": ModelType.IFT,
|
43 |
-
"TheBloke/guanaco-7B-HF": ModelType.FT,
|
44 |
-
"TheBloke/koala-7B-HF": ModelType.FT,
|
45 |
-
"TheBloke/wizardLM-7B-HF": ModelType.IFT,
|
46 |
-
"TheBloke/airoboros-13B-HF": ModelType.IFT,
|
47 |
-
"TheBloke/koala-13B-HF": ModelType.FT,
|
48 |
-
"TheBloke/Wizard-Vicuna-7B-Uncensored-HF": ModelType.FT,
|
49 |
-
"TheBloke/dromedary-65b-lora-HF": ModelType.IFT,
|
50 |
-
"TheBloke/wizardLM-13B-1.0-fp16": ModelType.IFT,
|
51 |
-
"TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16": ModelType.FT,
|
52 |
-
"TheBloke/Wizard-Vicuna-30B-Uncensored-fp16": ModelType.FT,
|
53 |
-
"TheBloke/wizard-vicuna-13B-HF": ModelType.IFT,
|
54 |
-
"TheBloke/UltraLM-13B-fp16": ModelType.IFT,
|
55 |
-
"TheBloke/OpenAssistant-FT-7-Llama-30B-HF": ModelType.FT,
|
56 |
-
"TheBloke/vicuna-13B-1.1-HF": ModelType.IFT,
|
57 |
-
"TheBloke/guanaco-13B-HF": ModelType.FT,
|
58 |
-
"TheBloke/guanaco-65B-HF": ModelType.FT,
|
59 |
-
"TheBloke/airoboros-7b-gpt4-fp16": ModelType.IFT,
|
60 |
-
"TheBloke/llama-30b-supercot-SuperHOT-8K-fp16": ModelType.IFT,
|
61 |
-
"TheBloke/Llama-2-13B-fp16": ModelType.PT,
|
62 |
-
"TheBloke/llama-2-70b-Guanaco-QLoRA-fp16": ModelType.FT,
|
63 |
-
"TheBloke/landmark-attention-llama7b-fp16": ModelType.IFT,
|
64 |
-
"TheBloke/Planner-7B-fp16": ModelType.IFT,
|
65 |
-
"TheBloke/Wizard-Vicuna-13B-Uncensored-HF": ModelType.FT,
|
66 |
-
"TheBloke/gpt4-alpaca-lora-13B-HF": ModelType.IFT,
|
67 |
-
"TheBloke/gpt4-x-vicuna-13B-HF": ModelType.IFT,
|
68 |
-
"TheBloke/gpt4-alpaca-lora_mlp-65B-HF": ModelType.IFT,
|
69 |
-
"TheBloke/tulu-13B-fp16": ModelType.IFT,
|
70 |
-
"TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16": ModelType.IFT,
|
71 |
-
"TheBloke/Llama-2-70B-fp16": ModelType.IFT,
|
72 |
-
"TheBloke/WizardLM-30B-fp16": ModelType.IFT,
|
73 |
-
"TheBloke/robin-13B-v2-fp16": ModelType.FT,
|
74 |
-
"TheBloke/robin-33B-v2-fp16": ModelType.FT,
|
75 |
-
"TheBloke/Vicuna-13B-CoT-fp16": ModelType.IFT,
|
76 |
-
"TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16": ModelType.IFT,
|
77 |
-
"TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16": ModelType.FT,
|
78 |
-
"TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16": ModelType.IFT,
|
79 |
-
"TheBloke/GPlatty-30B-SuperHOT-8K-fp16": ModelType.FT,
|
80 |
-
"TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16": ModelType.IFT,
|
81 |
-
"TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16": ModelType.IFT,
|
82 |
-
"jphme/orca_mini_v2_ger_7b": ModelType.IFT,
|
83 |
-
"Ejafa/vicuna_7B_vanilla_1.1": ModelType.FT,
|
84 |
-
"kevinpro/Vicuna-13B-CoT": ModelType.IFT,
|
85 |
-
"AlekseyKorshuk/pygmalion-6b-vicuna-chatml": ModelType.FT,
|
86 |
-
"AlekseyKorshuk/chatml-pyg-v1": ModelType.FT,
|
87 |
-
"concedo/Vicuzard-30B-Uncensored": ModelType.FT,
|
88 |
-
"concedo/OPT-19M-ChatSalad": ModelType.FT,
|
89 |
-
"concedo/Pythia-70M-ChatSalad": ModelType.FT,
|
90 |
-
"digitous/13B-HyperMantis": ModelType.IFT,
|
91 |
-
"digitous/Adventien-GPTJ": ModelType.FT,
|
92 |
-
"digitous/Alpacino13b": ModelType.IFT,
|
93 |
-
"digitous/GPT-R": ModelType.IFT,
|
94 |
-
"digitous/Javelin-R": ModelType.IFT,
|
95 |
-
"digitous/Javalion-GPTJ": ModelType.IFT,
|
96 |
-
"digitous/Javalion-R": ModelType.IFT,
|
97 |
-
"digitous/Skegma-GPTJ": ModelType.FT,
|
98 |
-
"digitous/Alpacino30b": ModelType.IFT,
|
99 |
-
"digitous/Janin-GPTJ": ModelType.FT,
|
100 |
-
"digitous/Janin-R": ModelType.FT,
|
101 |
-
"digitous/Javelin-GPTJ": ModelType.FT,
|
102 |
-
"SaylorTwift/gpt2_test": ModelType.PT,
|
103 |
-
"anton-l/gpt-j-tiny-random": ModelType.FT,
|
104 |
-
"Andron00e/YetAnother_Open-Llama-3B-LoRA-OpenOrca": ModelType.FT,
|
105 |
-
"Lazycuber/pyg-instruct-wizardlm": ModelType.FT,
|
106 |
-
"Lazycuber/Janemalion-6B": ModelType.FT,
|
107 |
-
"IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1": ModelType.FT,
|
108 |
-
"IDEA-CCNL/Ziya-LLaMA-13B-v1": ModelType.IFT,
|
109 |
-
"dsvv-cair/alpaca-cleaned-llama-30b-bf16": ModelType.FT,
|
110 |
-
"gpt2-medium": ModelType.PT,
|
111 |
-
"camel-ai/CAMEL-13B-Combined-Data": ModelType.IFT,
|
112 |
-
"camel-ai/CAMEL-13B-Role-Playing-Data": ModelType.FT,
|
113 |
-
"camel-ai/CAMEL-33B-Combined-Data": ModelType.IFT,
|
114 |
-
"PygmalionAI/pygmalion-6b": ModelType.FT,
|
115 |
-
"PygmalionAI/metharme-1.3b": ModelType.IFT,
|
116 |
-
"PygmalionAI/pygmalion-1.3b": ModelType.FT,
|
117 |
-
"PygmalionAI/pygmalion-350m": ModelType.FT,
|
118 |
-
"PygmalionAI/pygmalion-2.7b": ModelType.FT,
|
119 |
-
"medalpaca/medalpaca-7b": ModelType.FT,
|
120 |
-
"lilloukas/Platypus-30B": ModelType.IFT,
|
121 |
-
"lilloukas/GPlatty-30B": ModelType.FT,
|
122 |
-
"mncai/chatdoctor": ModelType.FT,
|
123 |
-
"chaoyi-wu/MedLLaMA_13B": ModelType.FT,
|
124 |
-
"LoupGarou/WizardCoder-Guanaco-15B-V1.0": ModelType.IFT,
|
125 |
-
"LoupGarou/WizardCoder-Guanaco-15B-V1.1": ModelType.FT,
|
126 |
-
"hakurei/instruct-12b": ModelType.IFT,
|
127 |
-
"hakurei/lotus-12B": ModelType.FT,
|
128 |
-
"shibing624/chinese-llama-plus-13b-hf": ModelType.IFT,
|
129 |
-
"shibing624/chinese-alpaca-plus-7b-hf": ModelType.IFT,
|
130 |
-
"shibing624/chinese-alpaca-plus-13b-hf": ModelType.IFT,
|
131 |
-
"mosaicml/mpt-7b-instruct": ModelType.IFT,
|
132 |
-
"mosaicml/mpt-30b-chat": ModelType.IFT,
|
133 |
-
"mosaicml/mpt-7b-storywriter": ModelType.FT,
|
134 |
-
"mosaicml/mpt-30b-instruct": ModelType.IFT,
|
135 |
-
"mosaicml/mpt-7b-chat": ModelType.IFT,
|
136 |
-
"mosaicml/mpt-30b": ModelType.PT,
|
137 |
-
"Corianas/111m": ModelType.IFT,
|
138 |
-
"Corianas/Quokka_1.3b": ModelType.IFT,
|
139 |
-
"Corianas/256_5epoch": ModelType.FT,
|
140 |
-
"Corianas/Quokka_256m": ModelType.IFT,
|
141 |
-
"Corianas/Quokka_590m": ModelType.IFT,
|
142 |
-
"Corianas/gpt-j-6B-Dolly": ModelType.FT,
|
143 |
-
"Corianas/Quokka_2.7b": ModelType.IFT,
|
144 |
-
"cyberagent/open-calm-7b": ModelType.FT,
|
145 |
-
"Aspik101/Nous-Hermes-13b-pl-lora_unload": ModelType.IFT,
|
146 |
-
"THUDM/chatglm2-6b": ModelType.IFT,
|
147 |
-
"MetaIX/GPT4-X-Alpasta-30b": ModelType.IFT,
|
148 |
-
"NYTK/PULI-GPTrio": ModelType.PT,
|
149 |
-
"EleutherAI/pythia-1.3b": ModelType.PT,
|
150 |
-
"EleutherAI/pythia-2.8b-deduped": ModelType.PT,
|
151 |
-
"EleutherAI/gpt-neo-125m": ModelType.PT,
|
152 |
-
"EleutherAI/pythia-160m": ModelType.PT,
|
153 |
-
"EleutherAI/gpt-neo-2.7B": ModelType.PT,
|
154 |
-
"EleutherAI/pythia-1b-deduped": ModelType.PT,
|
155 |
-
"EleutherAI/pythia-6.7b": ModelType.PT,
|
156 |
-
"EleutherAI/pythia-70m-deduped": ModelType.PT,
|
157 |
-
"EleutherAI/gpt-neox-20b": ModelType.PT,
|
158 |
-
"EleutherAI/pythia-1.4b-deduped": ModelType.PT,
|
159 |
-
"EleutherAI/pythia-2.7b": ModelType.PT,
|
160 |
-
"EleutherAI/pythia-6.9b-deduped": ModelType.PT,
|
161 |
-
"EleutherAI/pythia-70m": ModelType.PT,
|
162 |
-
"EleutherAI/gpt-j-6b": ModelType.PT,
|
163 |
-
"EleutherAI/pythia-12b-deduped": ModelType.PT,
|
164 |
-
"EleutherAI/gpt-neo-1.3B": ModelType.PT,
|
165 |
-
"EleutherAI/pythia-410m-deduped": ModelType.PT,
|
166 |
-
"EleutherAI/pythia-160m-deduped": ModelType.PT,
|
167 |
-
"EleutherAI/polyglot-ko-12.8b": ModelType.PT,
|
168 |
-
"EleutherAI/pythia-12b": ModelType.PT,
|
169 |
-
"roneneldan/TinyStories-33M": ModelType.PT,
|
170 |
-
"roneneldan/TinyStories-28M": ModelType.PT,
|
171 |
-
"roneneldan/TinyStories-1M": ModelType.PT,
|
172 |
-
"roneneldan/TinyStories-8M": ModelType.PT,
|
173 |
-
"roneneldan/TinyStories-3M": ModelType.PT,
|
174 |
-
"jerryjalapeno/nart-100k-7b": ModelType.FT,
|
175 |
-
"lmsys/vicuna-13b-v1.3": ModelType.IFT,
|
176 |
-
"lmsys/vicuna-7b-v1.3": ModelType.IFT,
|
177 |
-
"lmsys/vicuna-13b-v1.1": ModelType.IFT,
|
178 |
-
"lmsys/vicuna-13b-delta-v1.1": ModelType.IFT,
|
179 |
-
"lmsys/vicuna-7b-delta-v1.1": ModelType.IFT,
|
180 |
-
"abhiramtirumala/DialoGPT-sarcastic-medium": ModelType.FT,
|
181 |
-
"haonan-li/bactrian-x-llama-13b-merged": ModelType.IFT,
|
182 |
-
"Gryphe/MythoLogic-13b": ModelType.IFT,
|
183 |
-
"Gryphe/MythoBoros-13b": ModelType.IFT,
|
184 |
-
"pillowtalks-ai/delta13b": ModelType.FT,
|
185 |
-
"wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard": ModelType.FT,
|
186 |
-
"bigscience/bloom-7b1": ModelType.PT,
|
187 |
-
"bigcode/tiny_starcoder_py": ModelType.PT,
|
188 |
-
"bigcode/starcoderplus": ModelType.FT,
|
189 |
-
"bigcode/gpt_bigcode-santacoder": ModelType.PT,
|
190 |
-
"bigcode/starcoder": ModelType.PT,
|
191 |
-
"Open-Orca/OpenOrca-Preview1-13B": ModelType.IFT,
|
192 |
-
"microsoft/DialoGPT-large": ModelType.FT,
|
193 |
-
"microsoft/DialoGPT-small": ModelType.FT,
|
194 |
-
"microsoft/DialoGPT-medium": ModelType.FT,
|
195 |
-
"microsoft/CodeGPT-small-py": ModelType.FT,
|
196 |
-
"Tincando/fiction_story_generator": ModelType.FT,
|
197 |
-
"Pirr/pythia-13b-deduped-green_devil": ModelType.FT,
|
198 |
-
"Aeala/GPT4-x-AlpacaDente2-30b": ModelType.FT,
|
199 |
-
"Aeala/GPT4-x-AlpacaDente-30b": ModelType.FT,
|
200 |
-
"Aeala/GPT4-x-Alpasta-13b": ModelType.FT,
|
201 |
-
"Aeala/VicUnlocked-alpaca-30b": ModelType.IFT,
|
202 |
-
"Tap-M/Luna-AI-Llama2-Uncensored": ModelType.FT,
|
203 |
-
"illuin/test-custom-llama": ModelType.FT,
|
204 |
-
"dvruette/oasst-llama-13b-2-epochs": ModelType.FT,
|
205 |
-
"dvruette/oasst-gpt-neox-20b-1000-steps": ModelType.FT,
|
206 |
-
"dvruette/llama-13b-pretrained-dropout": ModelType.PT,
|
207 |
-
"dvruette/llama-13b-pretrained": ModelType.PT,
|
208 |
-
"dvruette/llama-13b-pretrained-sft-epoch-1": ModelType.FT,
|
209 |
-
"dvruette/llama-13b-pretrained-sft-do2": ModelType.FT,
|
210 |
-
"dvruette/oasst-gpt-neox-20b-3000-steps": ModelType.FT,
|
211 |
-
"dvruette/oasst-pythia-12b-pretrained-sft": ModelType.FT,
|
212 |
-
"dvruette/oasst-pythia-6.9b-4000-steps": ModelType.FT,
|
213 |
-
"dvruette/gpt-neox-20b-full-precision": ModelType.FT,
|
214 |
-
"dvruette/oasst-llama-13b-1000-steps": ModelType.FT,
|
215 |
-
"openlm-research/open_llama_7b_700bt_preview": ModelType.PT,
|
216 |
-
"openlm-research/open_llama_7b": ModelType.PT,
|
217 |
-
"openlm-research/open_llama_7b_v2": ModelType.PT,
|
218 |
-
"openlm-research/open_llama_3b": ModelType.PT,
|
219 |
-
"openlm-research/open_llama_13b": ModelType.PT,
|
220 |
-
"openlm-research/open_llama_3b_v2": ModelType.PT,
|
221 |
-
"PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged": ModelType.IFT,
|
222 |
-
"GeorgiaTechResearchInstitute/galpaca-30b": ModelType.IFT,
|
223 |
-
"GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct": ModelType.IFT,
|
224 |
-
"databricks/dolly-v2-7b": ModelType.IFT,
|
225 |
-
"databricks/dolly-v2-3b": ModelType.IFT,
|
226 |
-
"databricks/dolly-v2-12b": ModelType.IFT,
|
227 |
-
"Rachneet/gpt2-xl-alpaca": ModelType.FT,
|
228 |
-
"Locutusque/gpt2-conversational-or-qa": ModelType.FT,
|
229 |
-
"psyche/kogpt": ModelType.FT,
|
230 |
-
"NbAiLab/nb-gpt-j-6B-alpaca": ModelType.IFT,
|
231 |
-
"Mikael110/llama-2-7b-guanaco-fp16": ModelType.FT,
|
232 |
-
"Mikael110/llama-2-13b-guanaco-fp16": ModelType.FT,
|
233 |
-
"Fredithefish/CrimsonPajama": ModelType.IFT,
|
234 |
-
"Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K": ModelType.FT,
|
235 |
-
"Fredithefish/ScarletPajama-3B-HF": ModelType.FT,
|
236 |
-
"Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4": ModelType.IFT,
|
237 |
-
"acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1": ModelType.IFT,
|
238 |
-
"eachadea/vicuna-13b-1.1": ModelType.FT,
|
239 |
-
"eachadea/vicuna-7b-1.1": ModelType.FT,
|
240 |
-
"eachadea/vicuna-13b": ModelType.FT,
|
241 |
-
"openaccess-ai-collective/wizard-mega-13b": ModelType.IFT,
|
242 |
-
"openaccess-ai-collective/manticore-13b": ModelType.IFT,
|
243 |
-
"openaccess-ai-collective/manticore-30b-chat-pyg-alpha": ModelType.IFT,
|
244 |
-
"openaccess-ai-collective/minotaur-13b": ModelType.IFT,
|
245 |
-
"openaccess-ai-collective/minotaur-13b-fixed": ModelType.IFT,
|
246 |
-
"openaccess-ai-collective/hippogriff-30b-chat": ModelType.IFT,
|
247 |
-
"openaccess-ai-collective/manticore-13b-chat-pyg": ModelType.IFT,
|
248 |
-
"pythainlp/wangchanglm-7.5B-sft-enth": ModelType.IFT,
|
249 |
-
"pythainlp/wangchanglm-7.5B-sft-en-sharded": ModelType.IFT,
|
250 |
-
"euclaise/gpt-neox-122m-minipile-digits": ModelType.FT,
|
251 |
-
"stabilityai/StableBeluga1-Delta": ModelType.IFT,
|
252 |
-
"stabilityai/stablelm-tuned-alpha-7b": ModelType.IFT,
|
253 |
-
"stabilityai/StableBeluga2": ModelType.IFT,
|
254 |
-
"stabilityai/StableBeluga-13B": ModelType.IFT,
|
255 |
-
"stabilityai/StableBeluga-7B": ModelType.IFT,
|
256 |
-
"stabilityai/stablelm-base-alpha-7b": ModelType.PT,
|
257 |
-
"stabilityai/stablelm-base-alpha-3b": ModelType.PT,
|
258 |
-
"stabilityai/stablelm-tuned-alpha-3b": ModelType.IFT,
|
259 |
-
"alibidaran/medical_transcription_generator": ModelType.FT,
|
260 |
-
"CalderaAI/30B-Lazarus": ModelType.IFT,
|
261 |
-
"CalderaAI/13B-BlueMethod": ModelType.IFT,
|
262 |
-
"CalderaAI/13B-Ouroboros": ModelType.IFT,
|
263 |
-
"KoboldAI/OPT-13B-Erebus": ModelType.FT,
|
264 |
-
"KoboldAI/GPT-J-6B-Janeway": ModelType.FT,
|
265 |
-
"KoboldAI/GPT-J-6B-Shinen": ModelType.FT,
|
266 |
-
"KoboldAI/fairseq-dense-2.7B": ModelType.PT,
|
267 |
-
"KoboldAI/OPT-6B-nerys-v2": ModelType.FT,
|
268 |
-
"KoboldAI/GPT-NeoX-20B-Skein": ModelType.FT,
|
269 |
-
"KoboldAI/PPO_Pygway-6b-Mix": ModelType.FT,
|
270 |
-
"KoboldAI/fairseq-dense-6.7B": ModelType.PT,
|
271 |
-
"KoboldAI/fairseq-dense-125M": ModelType.PT,
|
272 |
-
"KoboldAI/OPT-13B-Nerybus-Mix": ModelType.FT,
|
273 |
-
"KoboldAI/OPT-2.7B-Erebus": ModelType.FT,
|
274 |
-
"KoboldAI/OPT-350M-Nerys-v2": ModelType.FT,
|
275 |
-
"KoboldAI/OPT-2.7B-Nerys-v2": ModelType.FT,
|
276 |
-
"KoboldAI/OPT-2.7B-Nerybus-Mix": ModelType.FT,
|
277 |
-
"KoboldAI/OPT-13B-Nerys-v2": ModelType.FT,
|
278 |
-
"KoboldAI/GPT-NeoX-20B-Erebus": ModelType.FT,
|
279 |
-
"KoboldAI/OPT-6.7B-Erebus": ModelType.FT,
|
280 |
-
"KoboldAI/fairseq-dense-355M": ModelType.PT,
|
281 |
-
"KoboldAI/OPT-6.7B-Nerybus-Mix": ModelType.FT,
|
282 |
-
"KoboldAI/GPT-J-6B-Adventure": ModelType.FT,
|
283 |
-
"KoboldAI/OPT-350M-Erebus": ModelType.FT,
|
284 |
-
"KoboldAI/GPT-J-6B-Skein": ModelType.FT,
|
285 |
-
"KoboldAI/OPT-30B-Erebus": ModelType.FT,
|
286 |
-
"klosax/pythia-160m-deduped-step92k-193bt": ModelType.PT,
|
287 |
-
"klosax/open_llama_3b_350bt_preview": ModelType.PT,
|
288 |
-
"klosax/openllama-3b-350bt": ModelType.PT,
|
289 |
-
"klosax/pythia-70m-deduped-step44k-92bt": ModelType.PT,
|
290 |
-
"klosax/open_llama_13b_600bt_preview": ModelType.PT,
|
291 |
-
"klosax/open_llama_7b_400bt_preview": ModelType.PT,
|
292 |
-
"kfkas/Llama-2-ko-7b-Chat": ModelType.IFT,
|
293 |
-
"WeOpenML/Alpaca-7B-v1": ModelType.IFT,
|
294 |
-
"WeOpenML/PandaLM-Alpaca-7B-v1": ModelType.IFT,
|
295 |
-
"TFLai/gpt2-turkish-uncased": ModelType.FT,
|
296 |
-
"ehartford/WizardLM-13B-Uncensored": ModelType.IFT,
|
297 |
-
"ehartford/dolphin-llama-13b": ModelType.IFT,
|
298 |
-
"ehartford/Wizard-Vicuna-30B-Uncensored": ModelType.FT,
|
299 |
-
"ehartford/WizardLM-30B-Uncensored": ModelType.IFT,
|
300 |
-
"ehartford/Wizard-Vicuna-13B-Uncensored": ModelType.FT,
|
301 |
-
"ehartford/WizardLM-7B-Uncensored": ModelType.IFT,
|
302 |
-
"ehartford/based-30b": ModelType.FT,
|
303 |
-
"ehartford/Wizard-Vicuna-7B-Uncensored": ModelType.FT,
|
304 |
-
"wahaha1987/llama_7b_sharegpt94k_fastchat": ModelType.FT,
|
305 |
-
"wahaha1987/llama_13b_sharegpt94k_fastchat": ModelType.FT,
|
306 |
-
"OpenAssistant/oasst-sft-1-pythia-12b": ModelType.FT,
|
307 |
-
"OpenAssistant/stablelm-7b-sft-v7-epoch-3": ModelType.IFT,
|
308 |
-
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5": ModelType.FT,
|
309 |
-
"OpenAssistant/pythia-12b-sft-v8-2.5k-steps": ModelType.IFT,
|
310 |
-
"OpenAssistant/pythia-12b-sft-v8-7k-steps": ModelType.IFT,
|
311 |
-
"OpenAssistant/pythia-12b-pre-v8-12.5k-steps": ModelType.IFT,
|
312 |
-
"OpenAssistant/llama2-13b-orca-8k-3319": ModelType.IFT,
|
313 |
-
"junelee/wizard-vicuna-13b": ModelType.FT,
|
314 |
-
"BreadAi/gpt-YA-1-1_160M": ModelType.PT,
|
315 |
-
"BreadAi/MuseCan": ModelType.PT,
|
316 |
-
"BreadAi/MusePy-1-2": ModelType.PT,
|
317 |
-
"BreadAi/DiscordPy": ModelType.PT,
|
318 |
-
"BreadAi/PM_modelV2": ModelType.PT,
|
319 |
-
"BreadAi/gpt-Youtube": ModelType.PT,
|
320 |
-
"BreadAi/StoryPy": ModelType.FT,
|
321 |
-
"julianweng/Llama-2-7b-chat-orcah": ModelType.FT,
|
322 |
-
"AGI-inc/lora_moe_7b_baseline": ModelType.FT,
|
323 |
-
"AGI-inc/lora_moe_7b": ModelType.FT,
|
324 |
-
"togethercomputer/GPT-NeoXT-Chat-Base-20B": ModelType.IFT,
|
325 |
-
"togethercomputer/RedPajama-INCITE-Chat-7B-v0.1": ModelType.IFT,
|
326 |
-
"togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1": ModelType.IFT,
|
327 |
-
"togethercomputer/RedPajama-INCITE-7B-Base": ModelType.PT,
|
328 |
-
"togethercomputer/RedPajama-INCITE-7B-Instruct": ModelType.IFT,
|
329 |
-
"togethercomputer/RedPajama-INCITE-Base-3B-v1": ModelType.PT,
|
330 |
-
"togethercomputer/Pythia-Chat-Base-7B": ModelType.IFT,
|
331 |
-
"togethercomputer/RedPajama-INCITE-Base-7B-v0.1": ModelType.PT,
|
332 |
-
"togethercomputer/GPT-JT-6B-v1": ModelType.IFT,
|
333 |
-
"togethercomputer/GPT-JT-6B-v0": ModelType.IFT,
|
334 |
-
"togethercomputer/RedPajama-INCITE-Chat-3B-v1": ModelType.IFT,
|
335 |
-
"togethercomputer/RedPajama-INCITE-7B-Chat": ModelType.IFT,
|
336 |
-
"togethercomputer/RedPajama-INCITE-Instruct-3B-v1": ModelType.IFT,
|
337 |
-
"Writer/camel-5b-hf": ModelType.IFT,
|
338 |
-
"Writer/palmyra-base": ModelType.PT,
|
339 |
-
"MBZUAI/LaMini-GPT-1.5B": ModelType.IFT,
|
340 |
-
"MBZUAI/lamini-cerebras-111m": ModelType.IFT,
|
341 |
-
"MBZUAI/lamini-neo-1.3b": ModelType.IFT,
|
342 |
-
"MBZUAI/lamini-cerebras-1.3b": ModelType.IFT,
|
343 |
-
"MBZUAI/lamini-cerebras-256m": ModelType.IFT,
|
344 |
-
"MBZUAI/LaMini-GPT-124M": ModelType.IFT,
|
345 |
-
"MBZUAI/lamini-neo-125m": ModelType.IFT,
|
346 |
-
"TehVenom/DiffMerge-DollyGPT-Pygmalion": ModelType.FT,
|
347 |
-
"TehVenom/PPO_Shygmalion-6b": ModelType.FT,
|
348 |
-
"TehVenom/Dolly_Shygmalion-6b-Dev_V8P2": ModelType.FT,
|
349 |
-
"TehVenom/Pygmalion_AlpacaLora-7b": ModelType.FT,
|
350 |
-
"TehVenom/PPO_Pygway-V8p4_Dev-6b": ModelType.FT,
|
351 |
-
"TehVenom/Dolly_Malion-6b": ModelType.FT,
|
352 |
-
"TehVenom/PPO_Shygmalion-V8p4_Dev-6b": ModelType.FT,
|
353 |
-
"TehVenom/ChanMalion": ModelType.FT,
|
354 |
-
"TehVenom/GPT-J-Pyg_PPO-6B": ModelType.IFT,
|
355 |
-
"TehVenom/Pygmalion-13b-Merged": ModelType.FT,
|
356 |
-
"TehVenom/Metharme-13b-Merged": ModelType.IFT,
|
357 |
-
"TehVenom/Dolly_Shygmalion-6b": ModelType.FT,
|
358 |
-
"TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4": ModelType.IFT,
|
359 |
-
"georgesung/llama2_7b_chat_uncensored": ModelType.FT,
|
360 |
-
"vicgalle/gpt2-alpaca": ModelType.IFT,
|
361 |
-
"vicgalle/alpaca-7b": ModelType.FT,
|
362 |
-
"vicgalle/gpt2-alpaca-gpt4": ModelType.IFT,
|
363 |
-
"facebook/opt-350m": ModelType.PT,
|
364 |
-
"facebook/opt-125m": ModelType.PT,
|
365 |
-
"facebook/xglm-4.5B": ModelType.PT,
|
366 |
-
"facebook/opt-2.7b": ModelType.PT,
|
367 |
-
"facebook/opt-6.7b": ModelType.PT,
|
368 |
-
"facebook/galactica-30b": ModelType.PT,
|
369 |
-
"facebook/opt-13b": ModelType.PT,
|
370 |
-
"facebook/opt-66b": ModelType.PT,
|
371 |
-
"facebook/xglm-7.5B": ModelType.PT,
|
372 |
-
"facebook/xglm-564M": ModelType.PT,
|
373 |
-
"facebook/opt-30b": ModelType.PT,
|
374 |
-
"golaxy/gogpt-7b": ModelType.FT,
|
375 |
-
"golaxy/gogpt2-7b": ModelType.FT,
|
376 |
-
"golaxy/gogpt-7b-bloom": ModelType.FT,
|
377 |
-
"golaxy/gogpt-3b-bloom": ModelType.FT,
|
378 |
-
"psmathur/orca_mini_v2_7b": ModelType.IFT,
|
379 |
-
"psmathur/orca_mini_7b": ModelType.IFT,
|
380 |
-
"psmathur/orca_mini_3b": ModelType.IFT,
|
381 |
-
"psmathur/orca_mini_v2_13b": ModelType.IFT,
|
382 |
-
"gpt2-xl": ModelType.PT,
|
383 |
-
"lxe/Cerebras-GPT-2.7B-Alpaca-SP": ModelType.FT,
|
384 |
-
"Monero/Manticore-13b-Chat-Pyg-Guanaco": ModelType.FT,
|
385 |
-
"Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b": ModelType.IFT,
|
386 |
-
"Monero/WizardLM-13b-OpenAssistant-Uncensored": ModelType.IFT,
|
387 |
-
"Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b": ModelType.IFT,
|
388 |
-
"jzjiao/opt-1.3b-rlhf": ModelType.FT,
|
389 |
-
"HuggingFaceH4/starchat-beta": ModelType.IFT,
|
390 |
-
"KnutJaegersberg/gpt-2-xl-EvolInstruct": ModelType.IFT,
|
391 |
-
"KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct": ModelType.IFT,
|
392 |
-
"KnutJaegersberg/galactica-orca-wizardlm-1.3b": ModelType.IFT,
|
393 |
-
"openchat/openchat_8192": ModelType.IFT,
|
394 |
-
"openchat/openchat_v2": ModelType.IFT,
|
395 |
-
"openchat/openchat_v2_w": ModelType.IFT,
|
396 |
-
"ausboss/llama-13b-supercot": ModelType.IFT,
|
397 |
-
"ausboss/llama-30b-supercot": ModelType.IFT,
|
398 |
-
"Neko-Institute-of-Science/metharme-7b": ModelType.IFT,
|
399 |
-
"Neko-Institute-of-Science/pygmalion-7b": ModelType.FT,
|
400 |
-
"SebastianSchramm/Cerebras-GPT-111M-instruction": ModelType.IFT,
|
401 |
-
"victor123/WizardLM-13B-1.0": ModelType.IFT,
|
402 |
-
"OpenBuddy/openbuddy-openllama-13b-v7-fp16": ModelType.FT,
|
403 |
-
"OpenBuddy/openbuddy-llama2-13b-v8.1-fp16": ModelType.FT,
|
404 |
-
"OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16": ModelType.FT,
|
405 |
-
"baichuan-inc/Baichuan-7B": ModelType.PT,
|
406 |
-
"tiiuae/falcon-40b-instruct": ModelType.IFT,
|
407 |
-
"tiiuae/falcon-40b": ModelType.PT,
|
408 |
-
"tiiuae/falcon-7b": ModelType.PT,
|
409 |
-
"YeungNLP/firefly-llama-13b": ModelType.FT,
|
410 |
-
"YeungNLP/firefly-llama-13b-v1.2": ModelType.FT,
|
411 |
-
"YeungNLP/firefly-llama2-13b": ModelType.FT,
|
412 |
-
"YeungNLP/firefly-ziya-13b": ModelType.FT,
|
413 |
-
"shaohang/Sparse0.5_OPT-1.3": ModelType.FT,
|
414 |
-
"xzuyn/Alpacino-SuperCOT-13B": ModelType.IFT,
|
415 |
-
"xzuyn/MedicWizard-7B": ModelType.FT,
|
416 |
-
"xDAN-AI/xDAN_13b_l2_lora": ModelType.FT,
|
417 |
-
"beomi/KoAlpaca-Polyglot-5.8B": ModelType.FT,
|
418 |
-
"beomi/llama-2-ko-7b": ModelType.IFT,
|
419 |
-
"Salesforce/codegen-6B-multi": ModelType.PT,
|
420 |
-
"Salesforce/codegen-16B-nl": ModelType.PT,
|
421 |
-
"Salesforce/codegen-6B-nl": ModelType.PT,
|
422 |
-
"ai-forever/rugpt3large_based_on_gpt2": ModelType.FT,
|
423 |
-
"gpt2-large": ModelType.PT,
|
424 |
-
"frank098/orca_mini_3b_juniper": ModelType.FT,
|
425 |
-
"frank098/WizardLM_13B_juniper": ModelType.FT,
|
426 |
-
"FPHam/Free_Sydney_13b_HF": ModelType.FT,
|
427 |
-
"huggingface/llama-13b": ModelType.PT,
|
428 |
-
"huggingface/llama-7b": ModelType.PT,
|
429 |
-
"huggingface/llama-65b": ModelType.PT,
|
430 |
-
"huggingface/llama-30b": ModelType.PT,
|
431 |
-
"Henk717/chronoboros-33B": ModelType.IFT,
|
432 |
-
"jondurbin/airoboros-13b-gpt4-1.4": ModelType.IFT,
|
433 |
-
"jondurbin/airoboros-7b": ModelType.IFT,
|
434 |
-
"jondurbin/airoboros-7b-gpt4": ModelType.IFT,
|
435 |
-
"jondurbin/airoboros-7b-gpt4-1.1": ModelType.IFT,
|
436 |
-
"jondurbin/airoboros-7b-gpt4-1.2": ModelType.IFT,
|
437 |
-
"jondurbin/airoboros-7b-gpt4-1.3": ModelType.IFT,
|
438 |
-
"jondurbin/airoboros-7b-gpt4-1.4": ModelType.IFT,
|
439 |
-
"jondurbin/airoboros-l2-7b-gpt4-1.4.1": ModelType.IFT,
|
440 |
-
"jondurbin/airoboros-l2-13b-gpt4-1.4.1": ModelType.IFT,
|
441 |
-
"jondurbin/airoboros-l2-70b-gpt4-1.4.1": ModelType.IFT,
|
442 |
-
"jondurbin/airoboros-13b": ModelType.IFT,
|
443 |
-
"jondurbin/airoboros-33b-gpt4-1.4": ModelType.IFT,
|
444 |
-
"jondurbin/airoboros-33b-gpt4-1.2": ModelType.IFT,
|
445 |
-
"jondurbin/airoboros-65b-gpt4-1.2": ModelType.IFT,
|
446 |
-
"ariellee/SuperPlatty-30B": ModelType.IFT,
|
447 |
-
"danielhanchen/open_llama_3b_600bt_preview": ModelType.FT,
|
448 |
-
"cerebras/Cerebras-GPT-256M": ModelType.PT,
|
449 |
-
"cerebras/Cerebras-GPT-1.3B": ModelType.PT,
|
450 |
-
"cerebras/Cerebras-GPT-13B": ModelType.PT,
|
451 |
-
"cerebras/Cerebras-GPT-2.7B": ModelType.PT,
|
452 |
-
"cerebras/Cerebras-GPT-111M": ModelType.PT,
|
453 |
-
"cerebras/Cerebras-GPT-6.7B": ModelType.PT,
|
454 |
-
"Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf": ModelType.RL,
|
455 |
-
"Yhyu13/llama-30B-hf-openassitant": ModelType.FT,
|
456 |
-
"NousResearch/Nous-Hermes-Llama2-13b": ModelType.IFT,
|
457 |
-
"NousResearch/Nous-Hermes-llama-2-7b": ModelType.IFT,
|
458 |
-
"NousResearch/Redmond-Puffin-13B": ModelType.IFT,
|
459 |
-
"NousResearch/Nous-Hermes-13b": ModelType.IFT,
|
460 |
-
"project-baize/baize-v2-7b": ModelType.IFT,
|
461 |
-
"project-baize/baize-v2-13b": ModelType.IFT,
|
462 |
-
"LLMs/WizardLM-13B-V1.0": ModelType.FT,
|
463 |
-
"LLMs/AlpacaGPT4-7B-elina": ModelType.FT,
|
464 |
-
"wenge-research/yayi-7b": ModelType.FT,
|
465 |
-
"wenge-research/yayi-7b-llama2": ModelType.FT,
|
466 |
-
"wenge-research/yayi-13b-llama2": ModelType.FT,
|
467 |
-
"yhyhy3/open_llama_7b_v2_med_instruct": ModelType.IFT,
|
468 |
-
"llama-anon/instruct-13b": ModelType.IFT,
|
469 |
-
"huggingtweets/jerma985": ModelType.FT,
|
470 |
-
"huggingtweets/gladosystem": ModelType.FT,
|
471 |
-
"huggingtweets/bladeecity-jerma985": ModelType.FT,
|
472 |
-
"huggyllama/llama-13b": ModelType.PT,
|
473 |
-
"huggyllama/llama-65b": ModelType.PT,
|
474 |
-
"FabbriSimo01/Facebook_opt_1.3b_Quantized": ModelType.PT,
|
475 |
-
"upstage/Llama-2-70b-instruct": ModelType.IFT,
|
476 |
-
"upstage/Llama-2-70b-instruct-1024": ModelType.IFT,
|
477 |
-
"upstage/llama-65b-instruct": ModelType.IFT,
|
478 |
-
"upstage/llama-30b-instruct-2048": ModelType.IFT,
|
479 |
-
"upstage/llama-30b-instruct": ModelType.IFT,
|
480 |
-
"WizardLM/WizardLM-13B-1.0": ModelType.IFT,
|
481 |
-
"WizardLM/WizardLM-13B-V1.1": ModelType.IFT,
|
482 |
-
"WizardLM/WizardLM-13B-V1.2": ModelType.IFT,
|
483 |
-
"WizardLM/WizardLM-30B-V1.0": ModelType.IFT,
|
484 |
-
"WizardLM/WizardCoder-15B-V1.0": ModelType.IFT,
|
485 |
-
"gpt2": ModelType.PT,
|
486 |
-
"keyfan/vicuna-chinese-replication-v1.1": ModelType.IFT,
|
487 |
-
"nthngdy/pythia-owt2-70m-100k": ModelType.FT,
|
488 |
-
"nthngdy/pythia-owt2-70m-50k": ModelType.FT,
|
489 |
-
"quantumaikr/KoreanLM-hf": ModelType.FT,
|
490 |
-
"quantumaikr/open_llama_7b_hf": ModelType.FT,
|
491 |
-
"quantumaikr/QuantumLM-70B-hf": ModelType.IFT,
|
492 |
-
"MayaPH/FinOPT-Lincoln": ModelType.FT,
|
493 |
-
"MayaPH/FinOPT-Franklin": ModelType.FT,
|
494 |
-
"MayaPH/GodziLLa-30B": ModelType.IFT,
|
495 |
-
"MayaPH/GodziLLa-30B-plus": ModelType.IFT,
|
496 |
-
"MayaPH/FinOPT-Washington": ModelType.FT,
|
497 |
-
"ogimgio/gpt-neo-125m-neurallinguisticpioneers": ModelType.FT,
|
498 |
-
"layoric/llama-2-13b-code-alpaca": ModelType.FT,
|
499 |
-
"CobraMamba/mamba-gpt-3b": ModelType.FT,
|
500 |
-
"CobraMamba/mamba-gpt-3b-v2": ModelType.FT,
|
501 |
-
"CobraMamba/mamba-gpt-3b-v3": ModelType.FT,
|
502 |
-
"timdettmers/guanaco-33b-merged": ModelType.FT,
|
503 |
-
"elinas/chronos-33b": ModelType.IFT,
|
504 |
-
"heegyu/RedTulu-Uncensored-3B-0719": ModelType.IFT,
|
505 |
-
"heegyu/WizardVicuna-Uncensored-3B-0719": ModelType.IFT,
|
506 |
-
"heegyu/WizardVicuna-3B-0719": ModelType.IFT,
|
507 |
-
"meta-llama/Llama-2-7b-chat-hf": ModelType.RL,
|
508 |
-
"meta-llama/Llama-2-7b-hf": ModelType.PT,
|
509 |
-
"meta-llama/Llama-2-13b-chat-hf": ModelType.RL,
|
510 |
-
"meta-llama/Llama-2-13b-hf": ModelType.PT,
|
511 |
-
"meta-llama/Llama-2-70b-chat-hf": ModelType.RL,
|
512 |
-
"meta-llama/Llama-2-70b-hf": ModelType.PT,
|
513 |
-
"xhyi/PT_GPTNEO350_ATG": ModelType.FT,
|
514 |
-
"h2oai/h2ogpt-gm-oasst1-en-1024-20b": ModelType.FT,
|
515 |
-
"h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt": ModelType.FT,
|
516 |
-
"h2oai/h2ogpt-oig-oasst1-512-6_9b": ModelType.IFT,
|
517 |
-
"h2oai/h2ogpt-oasst1-512-12b": ModelType.IFT,
|
518 |
-
"h2oai/h2ogpt-oig-oasst1-256-6_9b": ModelType.IFT,
|
519 |
-
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt": ModelType.FT,
|
520 |
-
"h2oai/h2ogpt-oasst1-512-20b": ModelType.IFT,
|
521 |
-
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2": ModelType.FT,
|
522 |
-
"h2oai/h2ogpt-gm-oasst1-en-1024-12b": ModelType.FT,
|
523 |
-
"h2oai/h2ogpt-gm-oasst1-multilang-1024-20b": ModelType.FT,
|
524 |
-
"bofenghuang/vigogne-13b-instruct": ModelType.IFT,
|
525 |
-
"bofenghuang/vigogne-13b-chat": ModelType.FT,
|
526 |
-
"bofenghuang/vigogne-2-7b-instruct": ModelType.IFT,
|
527 |
-
"bofenghuang/vigogne-7b-instruct": ModelType.IFT,
|
528 |
-
"bofenghuang/vigogne-7b-chat": ModelType.FT,
|
529 |
-
"Vmware/open-llama-7b-v2-open-instruct": ModelType.IFT,
|
530 |
-
"VMware/open-llama-0.7T-7B-open-instruct-v1.1": ModelType.IFT,
|
531 |
-
"ewof/koishi-instruct-3b": ModelType.IFT,
|
532 |
-
"gywy/llama2-13b-chinese-v1": ModelType.FT,
|
533 |
-
"GOAT-AI/GOAT-7B-Community": ModelType.FT,
|
534 |
-
"psyche/kollama2-7b": ModelType.FT,
|
535 |
-
"TheTravellingEngineer/llama2-7b-hf-guanaco": ModelType.FT,
|
536 |
-
"beaugogh/pythia-1.4b-deduped-sharegpt": ModelType.FT,
|
537 |
-
"augtoma/qCammel-70-x": ModelType.IFT,
|
538 |
-
"Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload": ModelType.IFT,
|
539 |
-
"anhnv125/pygmalion-6b-roleplay": ModelType.FT,
|
540 |
-
"64bits/LexPodLM-13B": ModelType.FT,
|
541 |
-
}
|
542 |
-
|
543 |
-
|
544 |
-
def model_type_from_str(type):
|
545 |
-
if "fine-tuned" in type or "πΆ" in type:
|
546 |
-
return ModelType.FT
|
547 |
-
if "pretrained" in type or "π’" in type:
|
548 |
-
return ModelType.PT
|
549 |
-
if "RL-tuned" in type or "π¦" in type:
|
550 |
-
return ModelType.RL
|
551 |
-
if "instruction-tuned" in type or "β" in type:
|
552 |
-
return ModelType.IFT
|
553 |
-
return ModelType.Unknown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display_models/read_results.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import Dict, List, Tuple
|
5 |
-
from distutils.util import strtobool
|
6 |
-
|
7 |
-
import dateutil
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
from src.display_models.utils import AutoEvalColumn, make_clickable_model
|
11 |
-
|
12 |
-
# νμ° - ko_commongen_v2 : acc_normμΈμ§ μ²΄ν¬ νμν¨
|
13 |
-
METRICS = ["acc_norm", "acc_norm", "acc", "mc2", "acc_norm"]
|
14 |
-
BENCHMARKS = ["ko_arc_challenge", "ko_hellaswag", "ko_mmlu", "ko_truthfulqa_mc", "ko_commongen_v2"] #, "ethicalverification"]
|
15 |
-
BENCH_TO_NAME = {
|
16 |
-
"ko_arc_challenge": AutoEvalColumn.arc.name,
|
17 |
-
"ko_hellaswag": AutoEvalColumn.hellaswag.name,
|
18 |
-
"ko_mmlu": AutoEvalColumn.mmlu.name,
|
19 |
-
"ko_truthfulqa_mc": AutoEvalColumn.truthfulqa.name,
|
20 |
-
"ko_commongen_v2": AutoEvalColumn.commongen_v2.name,
|
21 |
-
# TODO: Uncomment when we have results for these
|
22 |
-
# "ethicalverification": AutoEvalColumn.ethicalverification.name,
|
23 |
-
}
|
24 |
-
IS_PUBLIC = bool(strtobool(os.environ.get("IS_PUBLIC", "True")))
|
25 |
-
|
26 |
-
@dataclass
|
27 |
-
class EvalResult:
|
28 |
-
eval_name: str
|
29 |
-
org: str
|
30 |
-
model: str
|
31 |
-
revision: str
|
32 |
-
results: dict
|
33 |
-
precision: str = ""
|
34 |
-
model_type: str = ""
|
35 |
-
weight_type: str = ""
|
36 |
-
|
37 |
-
def to_dict(self):
|
38 |
-
from src.load_from_hub import is_model_on_hub
|
39 |
-
|
40 |
-
if self.org is not None:
|
41 |
-
base_model = f"{self.org}/{self.model}"
|
42 |
-
else:
|
43 |
-
base_model = f"{self.model}"
|
44 |
-
data_dict = {}
|
45 |
-
|
46 |
-
data_dict["eval_name"] = self.eval_name # not a column, just a save name
|
47 |
-
data_dict["weight_type"] = self.weight_type # not a column, just a save name
|
48 |
-
data_dict[AutoEvalColumn.precision.name] = self.precision
|
49 |
-
data_dict[AutoEvalColumn.model_type.name] = self.model_type
|
50 |
-
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
|
51 |
-
data_dict[AutoEvalColumn.dummy.name] = base_model
|
52 |
-
data_dict[AutoEvalColumn.revision.name] = self.revision
|
53 |
-
data_dict[AutoEvalColumn.average.name] = sum([v for k, v in self.results.items()]) / 5.0
|
54 |
-
data_dict[AutoEvalColumn.still_on_hub.name] = (
|
55 |
-
is_model_on_hub(base_model, self.revision)[0] or base_model == "baseline"
|
56 |
-
)
|
57 |
-
|
58 |
-
for benchmark in BENCHMARKS:
|
59 |
-
if benchmark not in self.results.keys():
|
60 |
-
self.results[benchmark] = None
|
61 |
-
|
62 |
-
for k, v in BENCH_TO_NAME.items():
|
63 |
-
data_dict[v] = self.results[k]
|
64 |
-
|
65 |
-
return data_dict
|
66 |
-
|
67 |
-
|
68 |
-
def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
69 |
-
with open(json_filepath) as fp:
|
70 |
-
data = json.load(fp)
|
71 |
-
|
72 |
-
try:
|
73 |
-
config = data["config"]
|
74 |
-
except KeyError:
|
75 |
-
config = data["config_general"]
|
76 |
-
model = config.get("model_name", None)
|
77 |
-
if model is None:
|
78 |
-
model = config.get("model_args", None)
|
79 |
-
|
80 |
-
model_sha = config.get("model_sha", "")
|
81 |
-
model_split = model.split("/", 1)
|
82 |
-
|
83 |
-
precision = config.get("model_dtype")
|
84 |
-
|
85 |
-
model = model_split[-1]
|
86 |
-
|
87 |
-
if len(model_split) == 1:
|
88 |
-
org = None
|
89 |
-
model = model_split[0]
|
90 |
-
result_key = f"{model}_{precision}"
|
91 |
-
else:
|
92 |
-
org = model_split[0]
|
93 |
-
model = model_split[1]
|
94 |
-
result_key = f"{org}_{model}_{precision}"
|
95 |
-
|
96 |
-
eval_results = []
|
97 |
-
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
98 |
-
accs = np.array([v.get(metric, None) for k, v in data["results"].items() if benchmark in k])
|
99 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
100 |
-
continue
|
101 |
-
mean_acc = np.mean(accs) * 100.0
|
102 |
-
eval_results.append(
|
103 |
-
EvalResult(
|
104 |
-
eval_name=result_key,
|
105 |
-
org=org,
|
106 |
-
model=model,
|
107 |
-
revision=model_sha,
|
108 |
-
results={benchmark: mean_acc},
|
109 |
-
precision=precision, # todo model_type=, weight_type=
|
110 |
-
)
|
111 |
-
)
|
112 |
-
|
113 |
-
return result_key, eval_results
|
114 |
-
|
115 |
-
|
116 |
-
def get_eval_results(results_path: str) -> List[EvalResult]:
|
117 |
-
json_filepaths = []
|
118 |
-
|
119 |
-
for root, dir, files in os.walk(results_path + ("-private" if not IS_PUBLIC else "")):
|
120 |
-
# We should only have json files in model results
|
121 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
122 |
-
continue
|
123 |
-
|
124 |
-
# Sort the files by date
|
125 |
-
# store results by precision maybe?
|
126 |
-
try:
|
127 |
-
files.sort(key=lambda x: dateutil.parser.parse(x.split("_", 1)[-1][:-5]))
|
128 |
-
except dateutil.parser._parser.ParserError:
|
129 |
-
files = [files[-1]]
|
130 |
-
|
131 |
-
# up_to_date = files[-1]
|
132 |
-
for file in files:
|
133 |
-
json_filepaths.append(os.path.join(root, file))
|
134 |
-
|
135 |
-
eval_results = {}
|
136 |
-
for json_filepath in json_filepaths:
|
137 |
-
result_key, results = parse_eval_result(json_filepath)
|
138 |
-
for eval_result in results:
|
139 |
-
if result_key in eval_results.keys():
|
140 |
-
eval_results[result_key].results.update(eval_result.results)
|
141 |
-
else:
|
142 |
-
eval_results[result_key] = eval_result
|
143 |
-
|
144 |
-
eval_results = [v for v in eval_results.values()]
|
145 |
-
|
146 |
-
return eval_results
|
147 |
-
|
148 |
-
|
149 |
-
def get_eval_results_dicts(results_path: str) -> List[Dict]:
|
150 |
-
eval_results = get_eval_results(results_path)
|
151 |
-
|
152 |
-
return [e.to_dict() for e in eval_results]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display_models/utils.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
from huggingface_hub import HfApi
|
5 |
-
|
6 |
-
API = HfApi()
|
7 |
-
|
8 |
-
|
9 |
-
# These classes are for user facing column names, to avoid having to change them
|
10 |
-
# all around the code when a modif is needed
|
11 |
-
@dataclass
|
12 |
-
class ColumnContent:
|
13 |
-
name: str
|
14 |
-
type: str
|
15 |
-
displayed_by_default: bool
|
16 |
-
hidden: bool = False
|
17 |
-
|
18 |
-
|
19 |
-
def fields(raw_class):
|
20 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
21 |
-
|
22 |
-
|
23 |
-
@dataclass(frozen=True)
|
24 |
-
class AutoEvalColumn: # Auto evals column
|
25 |
-
model_type_symbol = ColumnContent("T", "str", True)
|
26 |
-
model = ColumnContent("Model", "markdown", True)
|
27 |
-
average = ColumnContent("Average β¬οΈ", "number", True)
|
28 |
-
arc = ColumnContent("Ko-ARC", "number", True)
|
29 |
-
hellaswag = ColumnContent("Ko-HellaSwag", "number", True)
|
30 |
-
mmlu = ColumnContent("Ko-MMLU", "number", True)
|
31 |
-
truthfulqa = ColumnContent("Ko-TruthfulQA", "number", True)
|
32 |
-
commongen_v2 = ColumnContent("Ko-CommonGen V2", "number", True)
|
33 |
-
# TODO: Uncomment when we have results for these
|
34 |
-
# ethicalverification = ColumnContent("EthicalVerification", "number", True)
|
35 |
-
model_type = ColumnContent("Type", "str", False)
|
36 |
-
precision = ColumnContent("Precision", "str", False) # , True)
|
37 |
-
license = ColumnContent("Hub License", "str", False)
|
38 |
-
params = ColumnContent("#Params (B)", "number", False)
|
39 |
-
likes = ColumnContent("Hub β€οΈ", "number", False)
|
40 |
-
still_on_hub = ColumnContent("Available on the hub", "bool", False)
|
41 |
-
revision = ColumnContent("Model sha", "str", False, False)
|
42 |
-
dummy = ColumnContent(
|
43 |
-
"model_name_for_query", "str", True
|
44 |
-
) # dummy col to implement search bar (hidden by custom CSS)
|
45 |
-
|
46 |
-
|
47 |
-
@dataclass(frozen=True)
|
48 |
-
class EloEvalColumn: # Elo evals column
|
49 |
-
model = ColumnContent("Model", "markdown", True)
|
50 |
-
gpt4 = ColumnContent("GPT-4 (all)", "number", True)
|
51 |
-
human_all = ColumnContent("Human (all)", "number", True)
|
52 |
-
human_instruct = ColumnContent("Human (instruct)", "number", True)
|
53 |
-
human_code_instruct = ColumnContent("Human (code-instruct)", "number", True)
|
54 |
-
|
55 |
-
|
56 |
-
@dataclass(frozen=True)
|
57 |
-
class EvalQueueColumn: # Queue column
|
58 |
-
model = ColumnContent("model", "markdown", True)
|
59 |
-
revision = ColumnContent("revision", "str", True)
|
60 |
-
private = ColumnContent("private", "bool", True)
|
61 |
-
precision = ColumnContent("precision", "str", True)
|
62 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
63 |
-
status = ColumnContent("status", "str", True)
|
64 |
-
|
65 |
-
|
66 |
-
LLAMAS = [
|
67 |
-
"huggingface/llama-7b",
|
68 |
-
"huggingface/llama-13b",
|
69 |
-
"huggingface/llama-30b",
|
70 |
-
"huggingface/llama-65b",
|
71 |
-
]
|
72 |
-
|
73 |
-
|
74 |
-
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
75 |
-
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
76 |
-
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
77 |
-
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
78 |
-
MODEL_PAGE = "https://huggingface.co/models"
|
79 |
-
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
|
80 |
-
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
|
81 |
-
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
82 |
-
|
83 |
-
|
84 |
-
def model_hyperlink(link, model_name):
|
85 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
86 |
-
|
87 |
-
|
88 |
-
def make_clickable_model(model_name):
|
89 |
-
link = f"https://huggingface.co/{model_name}"
|
90 |
-
|
91 |
-
if model_name in LLAMAS:
|
92 |
-
link = LLAMA_LINK
|
93 |
-
model_name = model_name.split("/")[1]
|
94 |
-
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
95 |
-
link = VICUNA_LINK
|
96 |
-
model_name = "stable-vicuna-13b"
|
97 |
-
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
98 |
-
link = ALPACA_LINK
|
99 |
-
model_name = "alpaca-13b"
|
100 |
-
if model_name == "dolly-12b":
|
101 |
-
link = DOLLY_LINK
|
102 |
-
elif model_name == "vicuna-13b":
|
103 |
-
link = VICUNA_LINK
|
104 |
-
elif model_name == "koala-13b":
|
105 |
-
link = KOALA_LINK
|
106 |
-
elif model_name == "oasst-12b":
|
107 |
-
link = OASST_LINK
|
108 |
-
|
109 |
-
details_model_name = model_name.replace("/", "__")
|
110 |
-
# details_link = f"https://huggingface.co/datasets/open-ko-llm-leaderboard/details_{details_model_name}"
|
111 |
-
|
112 |
-
# if not bool(os.getenv("DEBUG", "False")):
|
113 |
-
# # We only add these checks when not debugging, as they are extremely slow
|
114 |
-
# print(f"details_link: {details_link}")
|
115 |
-
# try:
|
116 |
-
# check_path = list(
|
117 |
-
# API.list_files_info(
|
118 |
-
# repo_id=f"open-ko-llm-leaderboard/details_{details_model_name}",
|
119 |
-
# paths="README.md",
|
120 |
-
# repo_type="dataset",
|
121 |
-
# )
|
122 |
-
# )
|
123 |
-
# print(f"check_path: {check_path}")
|
124 |
-
# except Exception as err:
|
125 |
-
# # No details repo for this model
|
126 |
-
# print(f"No details repo for this model: {err}")
|
127 |
-
# return model_hyperlink(link, model_name)
|
128 |
-
|
129 |
-
return model_hyperlink(link, model_name) # + " " + model_hyperlink(details_link, "π")
|
130 |
-
|
131 |
-
|
132 |
-
def styled_error(error):
|
133 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
134 |
-
|
135 |
-
|
136 |
-
def styled_warning(warn):
|
137 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
138 |
-
|
139 |
-
|
140 |
-
def styled_message(message):
|
141 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
142 |
-
|
143 |
-
|
144 |
-
def has_no_nan_values(df, columns):
|
145 |
-
return df[columns].notna().all(axis=1)
|
146 |
-
|
147 |
-
|
148 |
-
def has_nan_values(df, columns):
|
149 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# clone / pull the lmeh eval data
|
6 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
7 |
+
|
8 |
+
REPO_ID = "upstage/open-ko-llm-leaderboard"
|
9 |
+
QUEUE_REPO = "open-ko-llm-leaderboard/requests"
|
10 |
+
RESULTS_REPO = "open-ko-llm-leaderboard/results"
|
11 |
+
|
12 |
+
PRIVATE_QUEUE_REPO = "open-ko-llm-leaderboard/private-requests"
|
13 |
+
PRIVATE_RESULTS_REPO = "open-ko-llm-leaderboard/private-results"
|
14 |
+
|
15 |
+
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
16 |
+
|
17 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
+
|
19 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
20 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
21 |
+
|
22 |
+
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
23 |
+
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
|
24 |
+
|
25 |
+
PATH_TO_COLLECTION = "open-ko-llm-leaderboard/ko-llm-leaderboard-best-models-659c7e45a481ceea4c883506"
|
26 |
+
|
27 |
+
# Rate limit variables
|
28 |
+
RATE_LIMIT_PERIOD = 7
|
29 |
+
RATE_LIMIT_QUOTA = 5
|
30 |
+
HAS_HIGHER_RATE_LIMIT = []
|
31 |
+
|
32 |
+
API = HfApi(token=H4_TOKEN)
|
src/leaderboard/filter_models.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.display.formatting import model_hyperlink
|
2 |
+
from src.display.utils import AutoEvalColumn
|
3 |
+
|
4 |
+
# Models which have been flagged by users as being problematic for a reason or another
|
5 |
+
# (Model name to forum discussion link)
|
6 |
+
FLAGGED_MODELS = {
|
7 |
+
"merged": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
8 |
+
}
|
9 |
+
|
10 |
+
# Models which have been requested by orgs to not be submitted on the leaderboard
|
11 |
+
DO_NOT_SUBMIT_MODELS = [
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
def flag_models(leaderboard_data: list[dict]):
|
16 |
+
for model_data in leaderboard_data:
|
17 |
+
# Merges are flagged automatically
|
18 |
+
if model_data[AutoEvalColumn.flagged.name] == True:
|
19 |
+
flag_key = "merged"
|
20 |
+
else:
|
21 |
+
flag_key = model_data["model_name_for_query"]
|
22 |
+
|
23 |
+
if flag_key in FLAGGED_MODELS:
|
24 |
+
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
25 |
+
issue_link = model_hyperlink(
|
26 |
+
FLAGGED_MODELS[flag_key],
|
27 |
+
f"See discussion #{issue_num}",
|
28 |
+
)
|
29 |
+
model_data[
|
30 |
+
AutoEvalColumn.model.name
|
31 |
+
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
32 |
+
model_data[AutoEvalColumn.flagged.name] = True
|
33 |
+
else:
|
34 |
+
model_data[AutoEvalColumn.flagged.name] = False
|
35 |
+
|
36 |
+
|
37 |
+
def remove_forbidden_models(leaderboard_data: list[dict]):
|
38 |
+
indices_to_remove = []
|
39 |
+
for ix, model in enumerate(leaderboard_data):
|
40 |
+
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
|
41 |
+
indices_to_remove.append(ix)
|
42 |
+
|
43 |
+
for ix in reversed(indices_to_remove):
|
44 |
+
leaderboard_data.pop(ix)
|
45 |
+
return leaderboard_data
|
46 |
+
|
47 |
+
|
48 |
+
def filter_models(leaderboard_data: list[dict]):
|
49 |
+
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
50 |
+
flag_models(leaderboard_data)
|
src/leaderboard/read_evals.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from huggingface_hub import ModelCard
|
11 |
+
|
12 |
+
from src.display.formatting import make_clickable_model
|
13 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
14 |
+
from src.submission.check_validity import is_model_on_hub, check_model_card
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class EvalResult:
|
19 |
+
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
20 |
+
eval_name: str # org_model_precision (uid)
|
21 |
+
full_model: str # org/model (path on hub)
|
22 |
+
org: str
|
23 |
+
model: str
|
24 |
+
revision: str # commit hash, "" if main
|
25 |
+
results: dict
|
26 |
+
precision: Precision = Precision.Unknown
|
27 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
28 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
29 |
+
architecture: str = "Unknown" # From config file
|
30 |
+
license: str = "?"
|
31 |
+
likes: int = 0
|
32 |
+
num_params: int = 0
|
33 |
+
date: str = "" # submission date of request file
|
34 |
+
still_on_hub: bool = False
|
35 |
+
is_merge: bool = False
|
36 |
+
flagged: bool = False
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def init_from_json_file(self, json_filepath):
|
40 |
+
"""Inits the result from the specific model result file"""
|
41 |
+
with open(json_filepath) as fp:
|
42 |
+
data = json.load(fp)
|
43 |
+
|
44 |
+
# We manage the legacy config format
|
45 |
+
config = data.get("config", data.get("config_general", None))
|
46 |
+
|
47 |
+
# Precision
|
48 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
49 |
+
|
50 |
+
# Get model and org
|
51 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
52 |
+
org_and_model = org_and_model.split("/", 1)
|
53 |
+
|
54 |
+
if len(org_and_model) == 1:
|
55 |
+
org = None
|
56 |
+
model = org_and_model[0]
|
57 |
+
result_key = f"{model}_{precision.value.name}"
|
58 |
+
else:
|
59 |
+
org = org_and_model[0]
|
60 |
+
model = org_and_model[1]
|
61 |
+
result_key = f"{org}_{model}_{precision.value.name}"
|
62 |
+
full_model = "/".join(org_and_model)
|
63 |
+
|
64 |
+
still_on_hub, error, model_config = is_model_on_hub(
|
65 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
66 |
+
)
|
67 |
+
architecture = "?"
|
68 |
+
if model_config is not None:
|
69 |
+
architectures = getattr(model_config, "architectures", None)
|
70 |
+
if architectures:
|
71 |
+
architecture = ";".join(architectures)
|
72 |
+
|
73 |
+
# If the model doesn't have a model card or a license, we consider it's deleted
|
74 |
+
if still_on_hub:
|
75 |
+
try:
|
76 |
+
if check_model_card(full_model)[0] is False:
|
77 |
+
still_on_hub = False
|
78 |
+
except Exception:
|
79 |
+
still_on_hub = False
|
80 |
+
|
81 |
+
# Check if the model is a merge
|
82 |
+
is_merge_from_metadata = False
|
83 |
+
flagged = False
|
84 |
+
if still_on_hub:
|
85 |
+
model_card = ModelCard.load(full_model)
|
86 |
+
|
87 |
+
if model_card.data.tags:
|
88 |
+
is_merge_from_metadata = "merge" in model_card.data.tags
|
89 |
+
merge_keywords = ["mergekit", "merged model", "merge model", "merging", "merge", "merged", "Carbon"]
|
90 |
+
# If the model is a merge but not saying it in the metadata, we flag it
|
91 |
+
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
|
92 |
+
flagged = is_merge_from_model_card and not is_merge_from_metadata
|
93 |
+
|
94 |
+
|
95 |
+
# Extract results available in this file (some results are split in several files)
|
96 |
+
results = {}
|
97 |
+
for task in Tasks:
|
98 |
+
task = task.value
|
99 |
+
|
100 |
+
# Some truthfulQA values are NaNs
|
101 |
+
if task.benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]:
|
102 |
+
if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][task.metric])):
|
103 |
+
results[task.benchmark] = 0.0
|
104 |
+
continue
|
105 |
+
|
106 |
+
# We average all scores of a given metric (mostly for mmlu)
|
107 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
|
108 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
109 |
+
continue
|
110 |
+
|
111 |
+
mean_acc = np.mean(accs) * 100.0
|
112 |
+
results[task.benchmark] = mean_acc
|
113 |
+
|
114 |
+
return self(
|
115 |
+
eval_name=result_key,
|
116 |
+
full_model=full_model,
|
117 |
+
org=org,
|
118 |
+
model=model,
|
119 |
+
results=results,
|
120 |
+
precision=precision,
|
121 |
+
revision= config.get("model_sha", ""),
|
122 |
+
still_on_hub=still_on_hub,
|
123 |
+
architecture=architecture,
|
124 |
+
is_merge=is_merge_from_metadata,
|
125 |
+
flagged=flagged,
|
126 |
+
)
|
127 |
+
|
128 |
+
def update_with_request_file(self, requests_path):
|
129 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
130 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
131 |
+
|
132 |
+
try:
|
133 |
+
with open(request_file, "r") as f:
|
134 |
+
request = json.load(f)
|
135 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
136 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
137 |
+
self.license = request.get("license", "?")
|
138 |
+
self.likes = request.get("likes", 0)
|
139 |
+
self.num_params = request.get("params", 0)
|
140 |
+
self.date = request.get("submitted_time", "")
|
141 |
+
except Exception:
|
142 |
+
print(f"Could not find request file for {self.org}/{self.model}")
|
143 |
+
|
144 |
+
def to_dict(self):
|
145 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
146 |
+
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
147 |
+
data_dict = {
|
148 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
149 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
150 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
151 |
+
AutoEvalColumn.merged.name: self.is_merge,
|
152 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, # + "π₯¦" if self.is_merge,
|
153 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
154 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
155 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
156 |
+
AutoEvalColumn.dummy.name: self.full_model,
|
157 |
+
AutoEvalColumn.revision.name: self.revision,
|
158 |
+
AutoEvalColumn.average.name: average,
|
159 |
+
AutoEvalColumn.license.name: self.license,
|
160 |
+
AutoEvalColumn.likes.name: self.likes,
|
161 |
+
AutoEvalColumn.params.name: self.num_params,
|
162 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
163 |
+
AutoEvalColumn.flagged.name: self.flagged
|
164 |
+
|
165 |
+
}
|
166 |
+
|
167 |
+
for task in Tasks:
|
168 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
169 |
+
|
170 |
+
return data_dict
|
171 |
+
|
172 |
+
|
173 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
174 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
175 |
+
request_files = os.path.join(
|
176 |
+
requests_path,
|
177 |
+
f"{model_name}_eval_request_*.json",
|
178 |
+
)
|
179 |
+
request_files = glob.glob(request_files)
|
180 |
+
|
181 |
+
# Select correct request file (precision)
|
182 |
+
request_file = ""
|
183 |
+
request_files = sorted(request_files, reverse=True)
|
184 |
+
for tmp_request_file in request_files:
|
185 |
+
with open(tmp_request_file, "r") as f:
|
186 |
+
req_content = json.load(f)
|
187 |
+
if (
|
188 |
+
req_content["status"] in ["FINISHED"]
|
189 |
+
and req_content["precision"] == precision.split(".")[-1]
|
190 |
+
):
|
191 |
+
request_file = tmp_request_file
|
192 |
+
return request_file
|
193 |
+
|
194 |
+
|
195 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
196 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
197 |
+
model_result_filepaths = []
|
198 |
+
|
199 |
+
for root, _, files in os.walk(results_path):
|
200 |
+
# We should only have json files in model results
|
201 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
202 |
+
continue
|
203 |
+
|
204 |
+
# Sort the files by date
|
205 |
+
try:
|
206 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
207 |
+
except dateutil.parser._parser.ParserError:
|
208 |
+
files = [files[-1]]
|
209 |
+
|
210 |
+
for file in files:
|
211 |
+
model_result_filepaths.append(os.path.join(root, file))
|
212 |
+
|
213 |
+
eval_results = {}
|
214 |
+
for model_result_filepath in model_result_filepaths:
|
215 |
+
# Creation of result
|
216 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
217 |
+
eval_result.update_with_request_file(requests_path)
|
218 |
+
|
219 |
+
# Store results of same eval together
|
220 |
+
eval_name = eval_result.eval_name
|
221 |
+
if eval_name in eval_results.keys():
|
222 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
223 |
+
else:
|
224 |
+
eval_results[eval_name] = eval_result
|
225 |
+
|
226 |
+
results = []
|
227 |
+
for v in eval_results.values():
|
228 |
+
try:
|
229 |
+
v.to_dict() # we test if the dict version is complete
|
230 |
+
results.append(v)
|
231 |
+
except KeyError: # not all eval values present
|
232 |
+
continue
|
233 |
+
|
234 |
+
return results
|
src/{load_from_hub.py β populate.py}
RENAMED
@@ -1,56 +1,30 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
from collections import defaultdict
|
4 |
|
5 |
import pandas as pd
|
6 |
-
from transformers import AutoConfig
|
7 |
|
8 |
-
from src.
|
9 |
-
from src.
|
10 |
-
from src.
|
11 |
-
from src.
|
12 |
|
13 |
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
21 |
-
if current_depth == depth:
|
22 |
-
for file in files:
|
23 |
-
if not file.endswith(".json"): continue
|
24 |
-
with open(os.path.join(root, file), "r") as f:
|
25 |
-
info = json.load(f)
|
26 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
27 |
-
|
28 |
-
# Select organisation
|
29 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
30 |
-
continue
|
31 |
-
organisation, _ = info["model"].split("/")
|
32 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
33 |
-
|
34 |
-
return set(file_names), users_to_submission_dates
|
35 |
-
|
36 |
-
|
37 |
-
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
38 |
-
all_data = get_eval_results_dicts(results_path)
|
39 |
-
|
40 |
-
# all_data.append(baseline)
|
41 |
-
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
|
42 |
-
|
43 |
-
df = pd.DataFrame.from_records(all_data)
|
44 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
45 |
df = df[cols].round(decimals=2)
|
46 |
|
47 |
# filter out if any of the benchmarks have not been produced
|
48 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
49 |
-
return df
|
50 |
|
51 |
|
52 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
53 |
-
|
54 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
55 |
all_evals = []
|
56 |
|
@@ -85,19 +59,3 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
85 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
86 |
df_failed = pd.DataFrame.from_records(failed_list, columns=cols)
|
87 |
return df_finished[cols], df_running[cols], df_pending[cols], df_failed[cols]
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
def is_model_on_hub(model_name: str, revision: str) -> bool:
|
92 |
-
try:
|
93 |
-
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
|
94 |
-
return True, None
|
95 |
-
|
96 |
-
except ValueError:
|
97 |
-
return (
|
98 |
-
False,
|
99 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
100 |
-
)
|
101 |
-
|
102 |
-
except Exception:
|
103 |
-
return False, "was not found on hub!"
|
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
+
from src.leaderboard.filter_models import filter_models
|
9 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
|
11 |
|
12 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
13 |
+
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
+
# all_data_json.append(baseline_row)
|
16 |
+
filter_models(all_data_json)
|
17 |
|
18 |
+
df = pd.DataFrame.from_records(all_data_json)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
20 |
df = df[cols].round(decimals=2)
|
21 |
|
22 |
# filter out if any of the benchmarks have not been produced
|
23 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
24 |
+
return raw_data, df
|
25 |
|
26 |
|
27 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
28 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
29 |
all_evals = []
|
30 |
|
|
|
59 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
60 |
df_failed = pd.DataFrame.from_records(failed_list, columns=cols)
|
61 |
return df_finished[cols], df_running[cols], df_pending[cols], df_failed[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/rate_limiting.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
|
2 |
-
from datetime import datetime, timezone, timedelta
|
3 |
-
|
4 |
-
|
5 |
-
def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period):
|
6 |
-
org_or_user, _ = submission_name.split("/")
|
7 |
-
if org_or_user not in users_to_submission_dates:
|
8 |
-
return 0
|
9 |
-
submission_dates = sorted(users_to_submission_dates[org_or_user])
|
10 |
-
|
11 |
-
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
|
12 |
-
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
|
13 |
-
|
14 |
-
return len(submissions_after_timelimit)
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
|
7 |
+
import huggingface_hub
|
8 |
+
from huggingface_hub import ModelCard
|
9 |
+
from huggingface_hub.hf_api import ModelInfo
|
10 |
+
from transformers import AutoConfig, AutoTokenizer
|
11 |
+
|
12 |
+
from src.envs import HAS_HIGHER_RATE_LIMIT
|
13 |
+
|
14 |
+
|
15 |
+
# ht to @Wauplin, thank you for the snippet!
|
16 |
+
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
|
17 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
18 |
+
# Returns operation status, and error message
|
19 |
+
try:
|
20 |
+
card = ModelCard.load(repo_id)
|
21 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
22 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
23 |
+
|
24 |
+
# Enforce license metadata
|
25 |
+
if card.data.license is None:
|
26 |
+
if not ("license_name" in card.data and "license_link" in card.data):
|
27 |
+
return False, (
|
28 |
+
"License not found. Please add a license to your model card using the `license` metadata or a"
|
29 |
+
" `license_name`/`license_link` pair."
|
30 |
+
)
|
31 |
+
|
32 |
+
# Enforce card content
|
33 |
+
if len(card.text) < 200:
|
34 |
+
return False, "Please add a description to your model card, it is too short."
|
35 |
+
|
36 |
+
return True, ""
|
37 |
+
|
38 |
+
|
39 |
+
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
40 |
+
try:
|
41 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
|
42 |
+
if test_tokenizer:
|
43 |
+
try:
|
44 |
+
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
45 |
+
except ValueError as e:
|
46 |
+
return (
|
47 |
+
False,
|
48 |
+
f"uses a tokenizer which is not in a transformers release: {e}",
|
49 |
+
None
|
50 |
+
)
|
51 |
+
except Exception as e:
|
52 |
+
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
53 |
+
return True, None, config
|
54 |
+
|
55 |
+
except ValueError:
|
56 |
+
return (
|
57 |
+
False,
|
58 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
59 |
+
None
|
60 |
+
)
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
return False, "was not found on hub!", None
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
67 |
+
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
68 |
+
try:
|
69 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
70 |
+
except (AttributeError, TypeError ):
|
71 |
+
try:
|
72 |
+
size_match = re.search(size_pattern, model_info.modelId.split("/")[-1].lower())
|
73 |
+
model_size = size_match.group(0)
|
74 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
75 |
+
except AttributeError:
|
76 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
77 |
+
|
78 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.split("/")[-1].lower()) else 1
|
79 |
+
model_size = size_factor * model_size
|
80 |
+
return model_size
|
81 |
+
|
82 |
+
def get_model_arch(model_info: ModelInfo):
|
83 |
+
return model_info.config.get("architectures", "Unknown")
|
84 |
+
|
85 |
+
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
|
86 |
+
if org_or_user not in users_to_submission_dates:
|
87 |
+
return True, ""
|
88 |
+
submission_dates = sorted(users_to_submission_dates[org_or_user])
|
89 |
+
|
90 |
+
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
|
91 |
+
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
|
92 |
+
|
93 |
+
num_models_submitted_in_period = len(submissions_after_timelimit)
|
94 |
+
if org_or_user in HAS_HIGHER_RATE_LIMIT:
|
95 |
+
rate_limit_quota = 2 * rate_limit_quota
|
96 |
+
|
97 |
+
if num_models_submitted_in_period > rate_limit_quota:
|
98 |
+
error_msg = f"Organisation or user `{org_or_user}`"
|
99 |
+
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
100 |
+
error_msg += f"in the last {rate_limit_period} days.\n"
|
101 |
+
error_msg += (
|
102 |
+
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard π€"
|
103 |
+
)
|
104 |
+
return False, error_msg
|
105 |
+
return True, ""
|
106 |
+
|
107 |
+
|
108 |
+
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
109 |
+
depth = 1
|
110 |
+
file_names = []
|
111 |
+
users_to_submission_dates = defaultdict(list)
|
112 |
+
|
113 |
+
for root, _, files in os.walk(requested_models_dir):
|
114 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
115 |
+
if current_depth == depth:
|
116 |
+
for file in files:
|
117 |
+
if not file.endswith(".json"):
|
118 |
+
continue
|
119 |
+
with open(os.path.join(root, file), "r") as f:
|
120 |
+
info = json.load(f)
|
121 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
122 |
+
|
123 |
+
# Select organisation
|
124 |
+
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
125 |
+
continue
|
126 |
+
organisation, _ = info["model"].split("/")
|
127 |
+
users_to_submission_dates[organisation].append(info["submitted_time"])
|
128 |
+
|
129 |
+
return set(file_names), users_to_submission_dates
|
src/submission/submit.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime, timezone
|
4 |
+
|
5 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
|
7 |
+
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
|
8 |
+
from src.submission.check_validity import (
|
9 |
+
already_submitted_models,
|
10 |
+
check_model_card,
|
11 |
+
get_model_size,
|
12 |
+
is_model_on_hub,
|
13 |
+
user_submission_permission,
|
14 |
+
)
|
15 |
+
|
16 |
+
REQUESTED_MODELS = None
|
17 |
+
USERS_TO_SUBMISSION_DATES = None
|
18 |
+
|
19 |
+
def add_new_eval(
|
20 |
+
model: str,
|
21 |
+
base_model: str,
|
22 |
+
revision: str,
|
23 |
+
precision: str,
|
24 |
+
private: bool,
|
25 |
+
weight_type: str,
|
26 |
+
model_type: str,
|
27 |
+
):
|
28 |
+
global REQUESTED_MODELS
|
29 |
+
global USERS_TO_SUBMISSION_DATES
|
30 |
+
if not REQUESTED_MODELS:
|
31 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
32 |
+
|
33 |
+
user_name = ""
|
34 |
+
model_path = model
|
35 |
+
if "/" in model:
|
36 |
+
user_name = model.split("/")[0]
|
37 |
+
model_path = model.split("/")[1]
|
38 |
+
|
39 |
+
precision = precision.split(" ")[0]
|
40 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
41 |
+
|
42 |
+
if model_type is None or model_type == "":
|
43 |
+
return styled_error("Please select a model type.")
|
44 |
+
|
45 |
+
# Upstage models are now allowed to be submitted to ensure the transparency and fairness of the leaderboard.
|
46 |
+
if user_name == "upstage":
|
47 |
+
return styled_warning("We do not conduct evaluations on Upstage models to ensure the transparency and fairness of the leaderboard. Please take this into consideration.")
|
48 |
+
|
49 |
+
# Is the user rate limited?
|
50 |
+
if user_name != "":
|
51 |
+
user_can_submit, error_msg = user_submission_permission(
|
52 |
+
user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
|
53 |
+
)
|
54 |
+
if not user_can_submit:
|
55 |
+
return styled_error(error_msg)
|
56 |
+
|
57 |
+
# Did the model authors forbid its submission to the leaderboard?
|
58 |
+
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
|
59 |
+
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
|
60 |
+
|
61 |
+
# Does the model actually exist?
|
62 |
+
if revision == "":
|
63 |
+
revision = "main"
|
64 |
+
|
65 |
+
# Is the model on the hub?
|
66 |
+
if weight_type in ["Delta", "Adapter"]:
|
67 |
+
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
|
68 |
+
if not base_model_on_hub:
|
69 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
70 |
+
|
71 |
+
if not weight_type == "Adapter":
|
72 |
+
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
|
73 |
+
if not model_on_hub:
|
74 |
+
return styled_error(f'Model "{model}" {error}')
|
75 |
+
|
76 |
+
# Is the model info correctly filled?
|
77 |
+
try:
|
78 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
79 |
+
except Exception:
|
80 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
81 |
+
|
82 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
83 |
+
|
84 |
+
# Were the model card and license filled?
|
85 |
+
try:
|
86 |
+
license = model_info.cardData["license"]
|
87 |
+
except Exception:
|
88 |
+
return styled_error("Please select a license for your model")
|
89 |
+
|
90 |
+
modelcard_OK, error_msg = check_model_card(model)
|
91 |
+
if not modelcard_OK:
|
92 |
+
return styled_error(error_msg)
|
93 |
+
|
94 |
+
# Seems good, creating the eval
|
95 |
+
print("Adding new eval")
|
96 |
+
|
97 |
+
eval_entry = {
|
98 |
+
"model": model,
|
99 |
+
"base_model": base_model,
|
100 |
+
"revision": revision,
|
101 |
+
"private": private,
|
102 |
+
"precision": precision,
|
103 |
+
"weight_type": weight_type,
|
104 |
+
"status": "PENDING",
|
105 |
+
"submitted_time": current_time,
|
106 |
+
"model_type": model_type,
|
107 |
+
"likes": model_info.likes,
|
108 |
+
"params": model_size,
|
109 |
+
"license": license,
|
110 |
+
}
|
111 |
+
|
112 |
+
# Check for duplicate submission
|
113 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
114 |
+
return styled_warning("This model has been already submitted.")
|
115 |
+
|
116 |
+
print("Creating eval file")
|
117 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
118 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
119 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
120 |
+
|
121 |
+
with open(out_path, "w") as f:
|
122 |
+
f.write(json.dumps(eval_entry))
|
123 |
+
|
124 |
+
print("Uploading eval file")
|
125 |
+
API.upload_file(
|
126 |
+
path_or_fileobj=out_path,
|
127 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
128 |
+
repo_id=QUEUE_REPO,
|
129 |
+
repo_type="dataset",
|
130 |
+
commit_message=f"Add {model} to eval queue",
|
131 |
+
)
|
132 |
+
|
133 |
+
# Remove the local file
|
134 |
+
os.remove(out_path)
|
135 |
+
|
136 |
+
return styled_message(
|
137 |
+
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
138 |
+
)
|
src/tools/collections.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
5 |
+
from huggingface_hub.utils._errors import HfHubHTTPError
|
6 |
+
from pandas import DataFrame
|
7 |
+
|
8 |
+
from src.display.utils import AutoEvalColumn, ModelType
|
9 |
+
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
10 |
+
|
11 |
+
# Specific intervals for the collections
|
12 |
+
intervals = {
|
13 |
+
"0~3B": pd.Interval(0, 3, closed="right"),
|
14 |
+
"3~7B": pd.Interval(3, 7.3, closed="right"),
|
15 |
+
"7~13B": pd.Interval(7.3, 13, closed="right"),
|
16 |
+
"13~35B": pd.Interval(13, 35, closed="right"),
|
17 |
+
"35~60B": pd.Interval(35, 60, closed="right"),
|
18 |
+
"60B+": pd.Interval(60, 10000, closed="right"),
|
19 |
+
}
|
20 |
+
|
21 |
+
def update_collections(df: DataFrame):
|
22 |
+
"""This function updates the Open Ko LLM Leaderboard model collection with the latest best models for
|
23 |
+
each size category and type.
|
24 |
+
"""
|
25 |
+
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
26 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
27 |
+
|
28 |
+
cur_best_models = []
|
29 |
+
|
30 |
+
ix = 0
|
31 |
+
for type in ModelType:
|
32 |
+
if type.value.name == "":
|
33 |
+
continue
|
34 |
+
for size in intervals:
|
35 |
+
# We filter the df to gather the relevant models
|
36 |
+
type_emoji = [t[0] for t in type.value.symbol]
|
37 |
+
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
38 |
+
|
39 |
+
numeric_interval = pd.IntervalIndex([intervals[size]])
|
40 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
41 |
+
filtered_df = filtered_df.loc[mask]
|
42 |
+
|
43 |
+
best_models = list(
|
44 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
|
45 |
+
)
|
46 |
+
print(type.value.symbol, size, best_models[:10])
|
47 |
+
|
48 |
+
# We add them one by one to the leaderboard
|
49 |
+
for model in best_models:
|
50 |
+
ix += 1
|
51 |
+
cur_len_collection = len(collection.items)
|
52 |
+
try:
|
53 |
+
collection = add_collection_item(
|
54 |
+
PATH_TO_COLLECTION,
|
55 |
+
item_id=model,
|
56 |
+
item_type="model",
|
57 |
+
exists_ok=True,
|
58 |
+
note=f"Best {type.to_str(' ')} model of size {size} on the leaderboard today!",
|
59 |
+
token=H4_TOKEN,
|
60 |
+
)
|
61 |
+
if (
|
62 |
+
len(collection.items) > cur_len_collection
|
63 |
+
): # we added an item - we make sure its position is correct
|
64 |
+
item_object_id = collection.items[-1].item_object_id
|
65 |
+
update_collection_item(
|
66 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
|
67 |
+
)
|
68 |
+
cur_len_collection = len(collection.items)
|
69 |
+
cur_best_models.append(model)
|
70 |
+
break
|
71 |
+
except HfHubHTTPError:
|
72 |
+
continue
|
73 |
+
|
74 |
+
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
75 |
+
for item in collection.items:
|
76 |
+
if item.item_id not in cur_best_models:
|
77 |
+
try:
|
78 |
+
delete_collection_item(
|
79 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
80 |
+
)
|
81 |
+
except HfHubHTTPError:
|
82 |
+
continue
|
src/tools/model_backlinks.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
models = [
|
2 |
+
"baseline",
|
3 |
+
]
|
src/tools/plots.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import plotly.express as px
|
4 |
+
from plotly.graph_objs import Figure
|
5 |
+
|
6 |
+
from src.leaderboard.filter_models import FLAGGED_MODELS
|
7 |
+
from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS
|
8 |
+
from src.leaderboard.read_evals import EvalResult
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
|
13 |
+
"""
|
14 |
+
Generates a DataFrame containing the maximum scores until each date.
|
15 |
+
|
16 |
+
:param results_df: A DataFrame containing result information including metric scores and dates.
|
17 |
+
:return: A new DataFrame containing the maximum scores until each date for every metric.
|
18 |
+
"""
|
19 |
+
# Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
|
20 |
+
results_df = pd.DataFrame(raw_data)
|
21 |
+
#results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
|
22 |
+
results_df.sort_values(by="date", inplace=True)
|
23 |
+
|
24 |
+
# Step 2: Initialize the scores dictionary
|
25 |
+
scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
|
26 |
+
|
27 |
+
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
28 |
+
for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
|
29 |
+
current_max = 0
|
30 |
+
last_date = ""
|
31 |
+
column = task.col_name
|
32 |
+
for _, row in results_df.iterrows():
|
33 |
+
current_model = row["full_model"]
|
34 |
+
if current_model in FLAGGED_MODELS:
|
35 |
+
continue
|
36 |
+
|
37 |
+
current_date = row["date"]
|
38 |
+
if task.benchmark == "Average":
|
39 |
+
current_score = np.mean(list(row["results"].values()))
|
40 |
+
else:
|
41 |
+
current_score = row["results"][task.benchmark]
|
42 |
+
|
43 |
+
if current_score > current_max:
|
44 |
+
if current_date == last_date and len(scores[column]) > 0:
|
45 |
+
scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
|
46 |
+
else:
|
47 |
+
scores[column].append({"model": current_model, "date": current_date, "score": current_score})
|
48 |
+
current_max = current_score
|
49 |
+
last_date = current_date
|
50 |
+
|
51 |
+
# Step 4: Return all dictionaries as DataFrames
|
52 |
+
return {k: pd.DataFrame(v) for k, v in scores.items()}
|
53 |
+
|
54 |
+
|
55 |
+
def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame:
|
56 |
+
"""
|
57 |
+
Transforms the scores DataFrame into a new format suitable for plotting.
|
58 |
+
|
59 |
+
:param scores_df: A DataFrame containing metric scores and dates.
|
60 |
+
:return: A new DataFrame reshaped for plotting purposes.
|
61 |
+
"""
|
62 |
+
# Initialize the list to store DataFrames
|
63 |
+
dfs = []
|
64 |
+
|
65 |
+
# Iterate over the cols and create a new DataFrame for each column
|
66 |
+
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
67 |
+
d = scores_df[col].reset_index(drop=True)
|
68 |
+
d["task"] = col
|
69 |
+
dfs.append(d)
|
70 |
+
|
71 |
+
# Concatenate all the created DataFrames
|
72 |
+
concat_df = pd.concat(dfs, ignore_index=True)
|
73 |
+
|
74 |
+
# Sort values by 'date'
|
75 |
+
concat_df.sort_values(by="date", inplace=True)
|
76 |
+
concat_df.reset_index(drop=True, inplace=True)
|
77 |
+
return concat_df
|
78 |
+
|
79 |
+
|
80 |
+
def create_metric_plot_obj(
|
81 |
+
df: pd.DataFrame, metrics: list[str], title: str
|
82 |
+
) -> Figure:
|
83 |
+
"""
|
84 |
+
Create a Plotly figure object with lines representing different metrics
|
85 |
+
and horizontal dotted lines representing human baselines.
|
86 |
+
|
87 |
+
:param df: The DataFrame containing the metric values, names, and dates.
|
88 |
+
:param metrics: A list of strings representing the names of the metrics
|
89 |
+
to be included in the plot.
|
90 |
+
:param title: A string representing the title of the plot.
|
91 |
+
:return: A Plotly figure object with lines representing metrics and
|
92 |
+
horizontal dotted lines representing human baselines.
|
93 |
+
"""
|
94 |
+
|
95 |
+
# Filter the DataFrame based on the specified metrics
|
96 |
+
df = df[df["task"].isin(metrics)]
|
97 |
+
|
98 |
+
# Filter the human baselines based on the specified metrics
|
99 |
+
filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
|
100 |
+
|
101 |
+
# Create a line figure using plotly express with specified markers and custom data
|
102 |
+
fig = px.line(
|
103 |
+
df,
|
104 |
+
x="date",
|
105 |
+
y="score",
|
106 |
+
color="task",
|
107 |
+
markers=True,
|
108 |
+
custom_data=["task", "score", "model"],
|
109 |
+
title=title,
|
110 |
+
)
|
111 |
+
|
112 |
+
# Update hovertemplate for better hover interaction experience
|
113 |
+
fig.update_traces(
|
114 |
+
hovertemplate="<br>".join(
|
115 |
+
[
|
116 |
+
"Model Name: %{customdata[2]}",
|
117 |
+
"Metric Name: %{customdata[0]}",
|
118 |
+
"Date: %{x}",
|
119 |
+
"Metric Value: %{y}",
|
120 |
+
]
|
121 |
+
)
|
122 |
+
)
|
123 |
+
|
124 |
+
# Update the range of the y-axis
|
125 |
+
fig.update_layout(yaxis_range=[0, 100])
|
126 |
+
|
127 |
+
# Create a dictionary to hold the color mapping for each metric
|
128 |
+
metric_color_mapping = {}
|
129 |
+
|
130 |
+
# Map each metric name to its color in the figure
|
131 |
+
for trace in fig.data:
|
132 |
+
metric_color_mapping[trace.name] = trace.line.color
|
133 |
+
|
134 |
+
# Iterate over filtered human baselines and add horizontal lines to the figure
|
135 |
+
for metric, value in filtered_human_baselines.items():
|
136 |
+
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
137 |
+
location = "top left" if metric == "Ko-HellaSwag" else "bottom left" # Set annotation position
|
138 |
+
# Add horizontal line with matched color and positioned annotation
|
139 |
+
fig.add_hline(
|
140 |
+
y=value,
|
141 |
+
line_dash="dot",
|
142 |
+
annotation_text=f"{metric} human baseline",
|
143 |
+
annotation_position=location,
|
144 |
+
annotation_font_size=10,
|
145 |
+
annotation_font_color=color,
|
146 |
+
line_color=color,
|
147 |
+
)
|
148 |
+
|
149 |
+
return fig
|
150 |
+
|
151 |
+
|
152 |
+
# Example Usage:
|
153 |
+
# human_baselines dictionary is defined.
|
154 |
+
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
|