File size: 3,980 Bytes
ca53d7c
 
 
 
 
 
 
 
 
 
5bb196c
 
 
 
 
 
 
5d1e573
5bb196c
 
 
 
ca53d7c
5d1e573
 
 
ca53d7c
 
 
 
 
 
 
 
6c0128c
ca53d7c
5bb196c
5d1e573
5bb196c
 
 
 
ca53d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0128c
 
5d1e573
ca53d7c
 
 
 
 
 
 
 
 
 
c3949f9
c77986f
 
ca53d7c
c77986f
 
 
c3949f9
ca53d7c
c77986f
ca53d7c
c77986f
c3949f9
c77986f
ca53d7c
c77986f
 
 
 
 
 
 
 
ca53d7c
 
c77986f
 
 
ca53d7c
 
5bb196c
ca53d7c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import torch
from torch import nn
import streamlit as st
import os

from PIL import Image
from io import BytesIO
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig, DonutProcessor, DonutImageProcessor, AutoTokenizer

def run_prediction(sample, model, processor, mode):

    if mode == "OCR":
        prompt = "<s><s_pretraining>"
        no_repeat_ngram_size = 10
    elif mode == "Table":
        prompt = "<s><s_hierarchical>"
        no_repeat_ngram_size = 0
    else:
        prompt = "<s><s_hierarchical>"
        no_repeat_ngram_size = 10


    print("prompt:", prompt)
    print("no_repeat_ngram_size:", no_repeat_ngram_size)

    pixel_values = processor(np.array(
                    sample,
                    np.float32,
                ), return_tensors="pt").pixel_values

    with torch.no_grad():
        outputs = model.generate(
            pixel_values.to(device),
            decoder_input_ids=processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device),
            do_sample=True,
            top_p=0.92, #.92,
            top_k=5,
            no_repeat_ngram_size=no_repeat_ngram_size,
            num_beams=3,
            output_attentions=False,
            output_hidden_states=False,
        )

    # process output
    prediction = processor.batch_decode(outputs)[0]
    print(prediction)
    
    return prediction
    

logo = Image.open("./rsz_unstructured_logo.png")
st.image(logo)

st.markdown('''
### Chipper
Chipper is an OCR-free Document Understanding Transformer. It was pre-trained with over 1M documents from public sources and fine-tuned on a large range of documents. 

At [Unstructured.io](https://github.com/Unstructured-IO/unstructured) we are on a mission to build custom preprocessing pipelines for labeling, training, or production ML-ready pipelines. 
Come and join us in our public repos and contribute! Each of your contributions and feedback holds great value and is very significant to the community.
''')

image_upload = None
photo = None
with st.sidebar:
    # file upload
    uploaded_file = st.file_uploader("Upload a document")
    if uploaded_file is not None:
        # To read file as bytes:
        image_bytes_data = uploaded_file.getvalue()
        image_upload = Image.open(BytesIO(image_bytes_data))

    mode = st.selectbox('Mode', ('OCR', 'Table', 'Element annotation'), index=2)

if image_upload:
    image = image_upload
else:
    image = Image.open(f"./document.png")

st.image(image, caption='Your target document')

with st.spinner(f'Processing the document ...'):
        pre_trained_model = "unstructuredio/chipper-fast-fine-tuning"
        processor = DonutProcessor.from_pretrained(pre_trained_model, use_auth_token=os.environ['HF_TOKEN'])
        
        device = "cuda" if torch.cuda.is_available() else "cpu"

        if 'model' in st.session_state:
            model = st.session_state['model']
        else:
            model = VisionEncoderDecoderModel.from_pretrained(pre_trained_model, use_auth_token=os.environ['HF_TOKEN'])

            from huggingface_hub import hf_hub_download

            lm_head_file = hf_hub_download(
                repo_id=pre_trained_model, filename="lm_head.pth", token=os.environ['HF_TOKEN']
            )

            rank = 128
            model.decoder.lm_head = nn.Sequential(
                nn.Linear(model.decoder.lm_head.weight.shape[1], rank, bias=False),
                nn.Linear(rank, rank, bias=False),
                nn.Linear(rank, model.decoder.lm_head.weight.shape[0], bias=True),
            )

            model.decoder.lm_head.load_state_dict(torch.load(lm_head_file))


            model.eval()
            model.to(device)
            st.session_state['model'] = model

st.info(f'Parsing document')
parsed_info = run_prediction(image.convert("RGB"), model, processor, mode)
st.text(f'\nDocument:')
st.text_area('Output text', value=parsed_info, height=800)