Spaces:
Running
Running
import gradio as gr | |
import argparse | |
import torch | |
from PIL import Image | |
from donut import DonutModel | |
def demo_process(input_img): | |
global model, task_prompt, task_name | |
input_img = Image.fromarray(input_img) | |
output = model.inference(image=input_img, prompt=task_prompt)["predictions"][0] | |
return output | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--task", type=str, default="Booking") | |
parser.add_argument("--pretrained_path", type=str, default="uartimcs/donut-booking-extract") | |
args, left_argv = parser.parse_known_args() | |
task_name = args.task | |
task_prompt = f"<s_{task_name}>" | |
image = Image.open("./sample-booking/CMA_150.jpg") | |
image.save("CMA_sample.jpg") | |
image = Image.open("./sample-booking/COSCO_150.jpg") | |
image.save("COSCO_sample.jpg") | |
image = Image.open("./sample-booking/ONEY_150.jpg") | |
image.save("ONEY_sample.jpg") | |
model = DonutModel.from_pretrained("uartimcs/donut-booking-extract") | |
model.eval() | |
demo = gr.Interface(fn=demo_process,inputs="image",outputs="json", title=f"Donut 🍩 demonstration for `{task_name}` task", examples=[["CMA_sample.jpg"], ["COSCO_sample.jpg"], ["ONEY_sample.jpg"]],) | |
demo.launch() |