animagine-xl-3.1 / utils.py
tuan2308's picture
Update utils.py
fa4e4a3 verified
import gc
import os
import random
import numpy as np
import json
import torch
import uuid
from PIL import Image
from datetime import datetime
from dataclasses import dataclass
from typing import Callable, Dict, Optional, Tuple
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
)
MAX_SEED = np.iinfo(np.int32).max
@dataclass
class StyleConfig:
prompt: str
negative_prompt: str
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]:
if aspect_ratio == "Custom":
return None
width, height = aspect_ratio.split(" x ")
return int(width), int(height)
def aspect_ratio_handler(
aspect_ratio: str, custom_width: int, custom_height: int
) -> Tuple[int, int]:
if aspect_ratio == "Custom":
return custom_width, custom_height
else:
width, height = parse_aspect_ratio(aspect_ratio)
return width, height
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def free_memory() -> None:
torch.cuda.empty_cache()
gc.collect()
def preprocess_prompt(
style_dict,
style_name: str,
positive: str,
negative: str = "",
add_style: bool = True,
) -> Tuple[str, str]:
p, n = style_dict.get(style_name, style_dict["(None)"])
if add_style and positive.strip():
formatted_positive = p.format(prompt=positive)
else:
formatted_positive = positive
combined_negative = n
if negative.strip():
if combined_negative:
combined_negative += ", " + negative
else:
combined_negative = negative
return formatted_positive, combined_negative
def common_upscale(
samples: torch.Tensor,
width: int,
height: int,
upscale_method: str,
) -> torch.Tensor:
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(
samples: torch.Tensor, upscale_method: str, scale_by: float
) -> torch.Tensor:
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
return common_upscale(samples, width, height, upscale_method)
def load_wildcard_files(wildcard_dir: str) -> Dict[str, str]:
wildcard_files = {}
for file in os.listdir(wildcard_dir):
if file.endswith(".txt"):
key = f"__{file.split('.')[0]}__" # Create a key like __character__
wildcard_files[key] = os.path.join(wildcard_dir, file)
return wildcard_files
def get_random_line_from_file(file_path: str) -> str:
with open(file_path, "r") as file:
lines = file.readlines()
if not lines:
return ""
return random.choice(lines).strip()
def add_wildcard(prompt: str, wildcard_files: Dict[str, str]) -> str:
for key, file_path in wildcard_files.items():
if key in prompt:
wildcard_line = get_random_line_from_file(file_path)
prompt = prompt.replace(key, wildcard_line)
return prompt
def preprocess_image_dimensions(width, height):
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
return width, height
def save_image(image, metadata, output_dir, is_colab):
if is_colab:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{current_time}.jpg"
else:
filename = str(uuid.uuid4()) + ".jpg"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
# Lưu metadata dưới dạng tệp văn bản đi kèm
metadata_str = json.dumps(metadata)
metadata_filepath = os.path.join(output_dir, f"{filename}.json")
with open(metadata_filepath, 'w') as f:
f.write(metadata_str)
# Lưu hình ảnh dưới định dạng JPEG
image.save(filepath, "JPEG")
return filepath
def is_google_colab():
try:
import google.colab
return True
except:
return False