Spaces:
tuan2308
/
Running on Zero

IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
23.7 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.layers import (
CNNBlockBase,
Conv2d,
DeformConv,
ModulatedDeformConv,
ShapeSpec,
get_norm,
)
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
__all__ = [
"ResNetBlockBase",
"BasicBlock",
"BottleneckBlock",
"DeformBottleneckBlock",
"BasicStem",
"ResNet",
"make_stage",
"build_resnet_backbone",
]
class BasicBlock(CNNBlockBase):
"""
The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`,
with two 3x3 conv layers and a projection shortcut if needed.
"""
def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"):
"""
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
stride (int): Stride for the first conv.
norm (str or callable): normalization for all conv layers.
See :func:`layers.get_norm` for supported format.
"""
super().__init__(in_channels, out_channels, stride)
if in_channels != out_channels:
self.shortcut = Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False,
norm=get_norm(norm, out_channels),
)
else:
self.shortcut = None
self.conv1 = Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False,
norm=get_norm(norm, out_channels),
)
self.conv2 = Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False,
norm=get_norm(norm, out_channels),
)
for layer in [self.conv1, self.conv2, self.shortcut]:
if layer is not None: # shortcut can be None
weight_init.c2_msra_fill(layer)
def forward(self, x):
out = self.conv1(x)
out = F.relu_(out)
out = self.conv2(out)
if self.shortcut is not None:
shortcut = self.shortcut(x)
else:
shortcut = x
out += shortcut
out = F.relu_(out)
return out
class BottleneckBlock(CNNBlockBase):
"""
The standard bottleneck residual block used by ResNet-50, 101 and 152
defined in :paper:`ResNet`. It contains 3 conv layers with kernels
1x1, 3x3, 1x1, and a projection shortcut if needed.
"""
def __init__(
self,
in_channels,
out_channels,
*,
bottleneck_channels,
stride=1,
num_groups=1,
norm="BN",
stride_in_1x1=False,
dilation=1,
):
"""
Args:
bottleneck_channels (int): number of output channels for the 3x3
"bottleneck" conv layers.
num_groups (int): number of groups for the 3x3 conv layer.
norm (str or callable): normalization for all conv layers.
See :func:`layers.get_norm` for supported format.
stride_in_1x1 (bool): when stride>1, whether to put stride in the
first 1x1 convolution or the bottleneck 3x3 convolution.
dilation (int): the dilation rate of the 3x3 conv layer.
"""
super().__init__(in_channels, out_channels, stride)
if in_channels != out_channels:
self.shortcut = Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False,
norm=get_norm(norm, out_channels),
)
else:
self.shortcut = None
# The original MSRA ResNet models have stride in the first 1x1 conv
# The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
# stride in the 3x3 conv
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
self.conv1 = Conv2d(
in_channels,
bottleneck_channels,
kernel_size=1,
stride=stride_1x1,
bias=False,
norm=get_norm(norm, bottleneck_channels),
)
self.conv2 = Conv2d(
bottleneck_channels,
bottleneck_channels,
kernel_size=3,
stride=stride_3x3,
padding=1 * dilation,
bias=False,
groups=num_groups,
dilation=dilation,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
if layer is not None: # shortcut can be None
weight_init.c2_msra_fill(layer)
# Zero-initialize the last normalization in each residual branch,
# so that at the beginning, the residual branch starts with zeros,
# and each residual block behaves like an identity.
# See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
# "For BN layers, the learnable scaling coefficient ฮณ is initialized
# to be 1, except for each residual block's last BN
# where ฮณ is initialized to be 0."
# nn.init.constant_(self.conv3.norm.weight, 0)
# TODO this somehow hurts performance when training GN models from scratch.
# Add it as an option when we need to use this code to train a backbone.
def forward(self, x):
out = self.conv1(x)
out = F.relu_(out)
out = self.conv2(out)
out = F.relu_(out)
out = self.conv3(out)
if self.shortcut is not None:
shortcut = self.shortcut(x)
else:
shortcut = x
out += shortcut
out = F.relu_(out)
return out
class DeformBottleneckBlock(CNNBlockBase):
"""
Similar to :class:`BottleneckBlock`, but with :paper:`deformable conv <deformconv>`
in the 3x3 convolution.
"""
def __init__(
self,
in_channels,
out_channels,
*,
bottleneck_channels,
stride=1,
num_groups=1,
norm="BN",
stride_in_1x1=False,
dilation=1,
deform_modulated=False,
deform_num_groups=1,
):
super().__init__(in_channels, out_channels, stride)
self.deform_modulated = deform_modulated
if in_channels != out_channels:
self.shortcut = Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False,
norm=get_norm(norm, out_channels),
)
else:
self.shortcut = None
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
self.conv1 = Conv2d(
in_channels,
bottleneck_channels,
kernel_size=1,
stride=stride_1x1,
bias=False,
norm=get_norm(norm, bottleneck_channels),
)
if deform_modulated:
deform_conv_op = ModulatedDeformConv
# offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size
offset_channels = 27
else:
deform_conv_op = DeformConv
offset_channels = 18
self.conv2_offset = Conv2d(
bottleneck_channels,
offset_channels * deform_num_groups,
kernel_size=3,
stride=stride_3x3,
padding=1 * dilation,
dilation=dilation,
)
self.conv2 = deform_conv_op(
bottleneck_channels,
bottleneck_channels,
kernel_size=3,
stride=stride_3x3,
padding=1 * dilation,
bias=False,
groups=num_groups,
dilation=dilation,
deformable_groups=deform_num_groups,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
if layer is not None: # shortcut can be None
weight_init.c2_msra_fill(layer)
nn.init.constant_(self.conv2_offset.weight, 0)
nn.init.constant_(self.conv2_offset.bias, 0)
def forward(self, x):
out = self.conv1(x)
out = F.relu_(out)
if self.deform_modulated:
offset_mask = self.conv2_offset(out)
offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
offset = torch.cat((offset_x, offset_y), dim=1)
mask = mask.sigmoid()
out = self.conv2(out, offset, mask)
else:
offset = self.conv2_offset(out)
out = self.conv2(out, offset)
out = F.relu_(out)
out = self.conv3(out)
if self.shortcut is not None:
shortcut = self.shortcut(x)
else:
shortcut = x
out += shortcut
out = F.relu_(out)
return out
class BasicStem(CNNBlockBase):
"""
The standard ResNet stem (layers before the first residual block),
with a conv, relu and max_pool.
"""
def __init__(self, in_channels=3, out_channels=64, norm="BN"):
"""
Args:
norm (str or callable): norm after the first conv layer.
See :func:`layers.get_norm` for supported format.
"""
super().__init__(in_channels, out_channels, 4)
self.in_channels = in_channels
self.conv1 = Conv2d(
in_channels,
out_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False,
norm=get_norm(norm, out_channels),
)
weight_init.c2_msra_fill(self.conv1)
def forward(self, x):
x = self.conv1(x)
x = F.relu_(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
return x
class ResNet(Backbone):
"""
Implement :paper:`ResNet`.
"""
def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0):
"""
Args:
stem (nn.Module): a stem module
stages (list[list[CNNBlockBase]]): several (typically 4) stages,
each contains multiple :class:`CNNBlockBase`.
num_classes (None or int): if None, will not perform classification.
Otherwise, will create a linear layer.
out_features (list[str]): name of the layers whose outputs should
be returned in forward. Can be anything in "stem", "linear", or "res2" ...
If None, will return the output of the last layer.
freeze_at (int): The number of stages at the beginning to freeze.
see :meth:`freeze` for detailed explanation.
"""
super().__init__()
self.stem = stem
self.num_classes = num_classes
current_stride = self.stem.stride
self._out_feature_strides = {"stem": current_stride}
self._out_feature_channels = {"stem": self.stem.out_channels}
self.stage_names, self.stages = [], []
if out_features is not None:
# Avoid keeping unused layers in this module. They consume extra memory
# and may cause allreduce to fail
num_stages = max(
[{"res2": 1, "res3": 2, "res4": 3, "res5": 4}.get(f, 0) for f in out_features]
)
stages = stages[:num_stages]
for i, blocks in enumerate(stages):
assert len(blocks) > 0, len(blocks)
for block in blocks:
assert isinstance(block, CNNBlockBase), block
name = "res" + str(i + 2)
stage = nn.Sequential(*blocks)
self.add_module(name, stage)
self.stage_names.append(name)
self.stages.append(stage)
self._out_feature_strides[name] = current_stride = int(
current_stride * np.prod([k.stride for k in blocks])
)
self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels
self.stage_names = tuple(self.stage_names) # Make it static for scripting
if num_classes is not None:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.linear = nn.Linear(curr_channels, num_classes)
# Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
# "The 1000-way fully-connected layer is initialized by
# drawing weights from a zero-mean Gaussian with standard deviation of 0.01."
nn.init.normal_(self.linear.weight, std=0.01)
name = "linear"
if out_features is None:
out_features = [name]
self._out_features = out_features
assert len(self._out_features)
children = [x[0] for x in self.named_children()]
for out_feature in self._out_features:
assert out_feature in children, "Available children: {}".format(", ".join(children))
self.freeze(freeze_at)
def forward(self, x):
"""
Args:
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
Returns:
dict[str->Tensor]: names and the corresponding features
"""
assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
outputs = {}
x = self.stem(x)
if "stem" in self._out_features:
outputs["stem"] = x
for name, stage in zip(self.stage_names, self.stages):
x = stage(x)
if name in self._out_features:
outputs[name] = x
if self.num_classes is not None:
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.linear(x)
if "linear" in self._out_features:
outputs["linear"] = x
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
def freeze(self, freeze_at=0):
"""
Freeze the first several stages of the ResNet. Commonly used in
fine-tuning.
Layers that produce the same feature map spatial size are defined as one
"stage" by :paper:`FPN`.
Args:
freeze_at (int): number of stages to freeze.
`1` means freezing the stem. `2` means freezing the stem and
one residual stage, etc.
Returns:
nn.Module: this ResNet itself
"""
if freeze_at >= 1:
self.stem.freeze()
for idx, stage in enumerate(self.stages, start=2):
if freeze_at >= idx:
for block in stage.children():
block.freeze()
return self
@staticmethod
def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs):
"""
Create a list of blocks of the same type that forms one ResNet stage.
Args:
block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this
stage. A module of this type must not change spatial resolution of inputs unless its
stride != 1.
num_blocks (int): number of blocks in this stage
in_channels (int): input channels of the entire stage.
out_channels (int): output channels of **every block** in the stage.
kwargs: other arguments passed to the constructor of
`block_class`. If the argument name is "xx_per_block", the
argument is a list of values to be passed to each block in the
stage. Otherwise, the same argument is passed to every block
in the stage.
Returns:
list[CNNBlockBase]: a list of block module.
Examples:
::
stage = ResNet.make_stage(
BottleneckBlock, 3, in_channels=16, out_channels=64,
bottleneck_channels=16, num_groups=1,
stride_per_block=[2, 1, 1],
dilations_per_block=[1, 1, 2]
)
Usually, layers that produce the same feature map spatial size are defined as one
"stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should
all be 1.
"""
blocks = []
for i in range(num_blocks):
curr_kwargs = {}
for k, v in kwargs.items():
if k.endswith("_per_block"):
assert len(v) == num_blocks, (
f"Argument '{k}' of make_stage should have the "
f"same length as num_blocks={num_blocks}."
)
newk = k[: -len("_per_block")]
assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
curr_kwargs[newk] = v[i]
else:
curr_kwargs[k] = v
blocks.append(
block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)
)
in_channels = out_channels
return blocks
@staticmethod
def make_default_stages(depth, block_class=None, **kwargs):
"""
Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152).
If it doesn't create the ResNet variant you need, please use :meth:`make_stage`
instead for fine-grained customization.
Args:
depth (int): depth of ResNet
block_class (type): the CNN block class. Has to accept
`bottleneck_channels` argument for depth > 50.
By default it is BasicBlock or BottleneckBlock, based on the
depth.
kwargs:
other arguments to pass to `make_stage`. Should not contain
stride and channels, as they are predefined for each depth.
Returns:
list[list[CNNBlockBase]]: modules in all stages; see arguments of
:class:`ResNet.__init__`.
"""
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
}[depth]
if block_class is None:
block_class = BasicBlock if depth < 50 else BottleneckBlock
if depth < 50:
in_channels = [64, 64, 128, 256]
out_channels = [64, 128, 256, 512]
else:
in_channels = [64, 256, 512, 1024]
out_channels = [256, 512, 1024, 2048]
ret = []
for (n, s, i, o) in zip(num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels):
if depth >= 50:
kwargs["bottleneck_channels"] = o // 4
ret.append(
ResNet.make_stage(
block_class=block_class,
num_blocks=n,
stride_per_block=[s] + [1] * (n - 1),
in_channels=i,
out_channels=o,
**kwargs,
)
)
return ret
ResNetBlockBase = CNNBlockBase
"""
Alias for backward compatibiltiy.
"""
def make_stage(*args, **kwargs):
"""
Deprecated alias for backward compatibiltiy.
"""
return ResNet.make_stage(*args, **kwargs)
@BACKBONE_REGISTRY.register()
def build_resnet_backbone(cfg, input_shape):
"""
Create a ResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# need registration of new blocks/stems?
norm = cfg.MODEL.RESNETS.NORM
stem = BasicStem(
in_channels=input_shape.channels,
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
norm=norm,
)
# fmt: off
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
# fmt: on
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
}[depth]
if depth in [18, 34]:
assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34"
assert not any(
deform_on_per_stage
), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34"
assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34"
assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34"
stages = []
for idx, stage_idx in enumerate(range(2, 6)):
# res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper
dilation = res5_dilation if stage_idx == 5 else 1
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
stage_kargs = {
"num_blocks": num_blocks_per_stage[idx],
"stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1),
"in_channels": in_channels,
"out_channels": out_channels,
"norm": norm,
}
# Use BasicBlock for R18 and R34.
if depth in [18, 34]:
stage_kargs["block_class"] = BasicBlock
else:
stage_kargs["bottleneck_channels"] = bottleneck_channels
stage_kargs["stride_in_1x1"] = stride_in_1x1
stage_kargs["dilation"] = dilation
stage_kargs["num_groups"] = num_groups
if deform_on_per_stage[idx]:
stage_kargs["block_class"] = DeformBottleneckBlock
stage_kargs["deform_modulated"] = deform_modulated
stage_kargs["deform_num_groups"] = deform_num_groups
else:
stage_kargs["block_class"] = BottleneckBlock
blocks = ResNet.make_stage(**stage_kargs)
in_channels = out_channels
out_channels *= 2
bottleneck_channels *= 2
stages.append(blocks)
return ResNet(stem, stages, out_features=out_features, freeze_at=freeze_at)