|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : [email protected] |
|
@File : warmup_scheduler.py |
|
@Time : 3/28/19 2:24 PM |
|
@Desc : |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
import math |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
|
|
|
|
class GradualWarmupScheduler(_LRScheduler): |
|
""" Gradually warm-up learning rate with cosine annealing in optimizer. |
|
Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'. |
|
""" |
|
|
|
def __init__(self, optimizer, total_epoch, eta_min=0, warmup_epoch=10, last_epoch=-1): |
|
self.total_epoch = total_epoch |
|
self.eta_min = eta_min |
|
self.warmup_epoch = warmup_epoch |
|
super(GradualWarmupScheduler, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch <= self.warmup_epoch: |
|
return [self.eta_min + self.last_epoch*(base_lr - self.eta_min)/self.warmup_epoch for base_lr in self.base_lrs] |
|
else: |
|
return [self.eta_min + (base_lr-self.eta_min)*(1+math.cos(math.pi*(self.last_epoch-self.warmup_epoch)/(self.total_epoch-self.warmup_epoch))) / 2 for base_lr in self.base_lrs] |
|
|
|
|
|
class SGDRScheduler(_LRScheduler): |
|
""" Consine annealing with warm up and restarts. |
|
Proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`. |
|
""" |
|
def __init__(self, optimizer, total_epoch=150, start_cyclical=100, cyclical_base_lr=7e-4, cyclical_epoch=10, eta_min=0, warmup_epoch=10, last_epoch=-1): |
|
self.total_epoch = total_epoch |
|
self.start_cyclical = start_cyclical |
|
self.cyclical_epoch = cyclical_epoch |
|
self.cyclical_base_lr = cyclical_base_lr |
|
self.eta_min = eta_min |
|
self.warmup_epoch = warmup_epoch |
|
super(SGDRScheduler, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch < self.warmup_epoch: |
|
return [self.eta_min + self.last_epoch*(base_lr - self.eta_min)/self.warmup_epoch for base_lr in self.base_lrs] |
|
elif self.last_epoch < self.start_cyclical: |
|
return [self.eta_min + (base_lr-self.eta_min)*(1+math.cos(math.pi*(self.last_epoch-self.warmup_epoch)/(self.start_cyclical-self.warmup_epoch))) / 2 for base_lr in self.base_lrs] |
|
else: |
|
return [self.eta_min + (self.cyclical_base_lr-self.eta_min)*(1+math.cos(math.pi* ((self.last_epoch-self.start_cyclical)% self.cyclical_epoch)/self.cyclical_epoch)) / 2 for base_lr in self.base_lrs] |
|
|
|
|
|
if __name__ == '__main__': |
|
import matplotlib.pyplot as plt |
|
import torch |
|
model = torch.nn.Linear(10, 2) |
|
optimizer = torch.optim.SGD(params=model.parameters(), lr=7e-3, momentum=0.9, weight_decay=5e-4) |
|
scheduler_warmup = SGDRScheduler(optimizer, total_epoch=150, eta_min=7e-5, warmup_epoch=10, start_cyclical=100, cyclical_base_lr=3.5e-3, cyclical_epoch=10) |
|
lr = [] |
|
for epoch in range(0,150): |
|
scheduler_warmup.step(epoch) |
|
lr.append(scheduler_warmup.get_lr()) |
|
plt.style.use('ggplot') |
|
plt.plot(list(range(0,150)), lr) |
|
plt.show() |
|
|
|
|