Spaces:
Runtime error
Runtime error
# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import soundfile as sf | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from peft import LoraConfig, TaskType, get_peft_model | |
from transformers import ( | |
WhisperFeatureExtractor, | |
WhisperModel, | |
LlamaForCausalLM, | |
LlamaTokenizer | |
) | |
import librosa | |
from beats.BEATs import BEATsConfig, BEATs | |
from qformer.Qformer import BertConfig, BertLMHeadModel | |
class SALMONN(nn.Module): | |
def __init__( | |
self, | |
ckpt, | |
whisper_path, | |
beats_path, | |
vicuna_path, | |
speech_qformer_token_num=1, | |
speech_qformer_layer=2, | |
lora=True, | |
lora_alpha=32, | |
lora_rank=8, | |
lora_dropout=0.1, | |
second_per_frame=0.333333, | |
second_stride=0.333333, | |
low_resource=False | |
): | |
super().__init__() | |
# feature_extractor | |
self.feature_extractor = WhisperFeatureExtractor.from_pretrained(whisper_path) | |
# whisper | |
self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder | |
self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model) | |
# beats | |
self.beats_ckpt = beats_path | |
beats_checkpoint = torch.load(self.beats_ckpt, map_location='cpu') | |
beats_cfg = BEATsConfig(beats_checkpoint['cfg']) | |
beats = BEATs(beats_cfg) | |
beats.load_state_dict(beats_checkpoint['model']) | |
self.beats = beats | |
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim) | |
for name, param in self.beats.named_parameters(): | |
param.requires_grad = False | |
self.beats.eval() | |
# init speech Qformer | |
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer( | |
speech_qformer_token_num, | |
self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim, | |
speech_qformer_layer, | |
) | |
self.second_per_frame = second_per_frame | |
self.second_stride = second_stride | |
# vicuna | |
if not low_resource: | |
self.llama_model = LlamaForCausalLM.from_pretrained( | |
vicuna_path, | |
torch_dtype=torch.float16, | |
) | |
else: | |
self.llama_model = LlamaForCausalLM.from_pretrained( | |
vicuna_path, | |
torch_dtype=torch.float16, | |
load_in_8bit=True, | |
device_map={'': 0} | |
) | |
# lora | |
self.lora = lora | |
if lora: | |
target_modules = None | |
self.peft_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
inference_mode=True, | |
r=lora_rank, | |
lora_alpha=lora_alpha, | |
lora_dropout=lora_dropout, | |
target_modules=target_modules, | |
) | |
self.llama_model = get_peft_model(self.llama_model, self.peft_config) | |
# tokenizer | |
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_path, use_fast=False) | |
self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
self.llama_tokenizer.padding_side = "right" | |
# proj | |
self.speech_llama_proj = nn.Linear( | |
self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size) | |
# load ckpt | |
ckpt_dict = torch.load(ckpt)['model'] | |
self.load_state_dict(ckpt_dict, strict=False) | |
def generate( | |
self, | |
wav_path, | |
prompt, | |
prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:", | |
device='cuda:0', | |
max_length=150, | |
num_beams=4, | |
do_sample=True, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
length_penalty=1.0, | |
temperature=1.0, | |
): | |
# read wav | |
wav, sr = sf.read(wav_path) | |
if len(wav.shape) == 2: | |
wav = wav[:, 0] | |
if len(wav) > 30 * sr: | |
wav = wav[: 30 * sr] | |
if sr != 16000: | |
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft") | |
# whisper | |
spectrogram = self.feature_extractor(wav, return_tensors="pt", sampling_rate=16000).input_features.to(device) # [1, 80, 3000] | |
speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state | |
# beats | |
raw_wav = torch.from_numpy(wav).to(device).unsqueeze(0) | |
audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool() | |
audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True) | |
# auditory embeds | |
speech_embeds = self.ln_speech(speech_embeds) | |
audio_embeds = self.ln_audio(audio_embeds) | |
audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1))) | |
speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1) | |
# split frames | |
B, T, C = speech_embeds.shape | |
kernel = round(T * self.second_per_frame / 30.0) | |
stride = round(T * self.second_stride / 30.0) | |
kernel = (1, kernel) | |
stride = (1, stride) | |
speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2) | |
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) | |
_, _, L = speech_embeds_overlap.shape | |
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) | |
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) | |
speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C) | |
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device) | |
# Qformer | |
query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1) | |
query_output = self.speech_Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=speech_embeds, | |
encoder_attention_mask=speech_atts, | |
return_dict=True, | |
) | |
speech_embeds = self.speech_llama_proj(query_output.last_hidden_state) | |
speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous() | |
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device) | |
# USER: <Speech>speech_embeds<Speech> prompt\nASSISTANT: | |
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens | |
prompt_left, prompts_right = prompt_pattern.format(prompt).split('<SpeechHere>') | |
prompt_left_ids = self.llama_tokenizer( | |
prompt_left, | |
return_tensors="pt", | |
add_special_tokens=False | |
).to(speech_embeds.device).input_ids | |
prompt_left_embeds = embed_tokens(prompt_left_ids) | |
prompt_right_ids = self.llama_tokenizer( | |
prompts_right, | |
return_tensors="pt", | |
add_special_tokens=False | |
).to(speech_embeds.device).input_ids | |
prompt_right_embeds = embed_tokens(prompt_right_ids) | |
bos_embeds = self.llama_model.model.embed_tokens( | |
torch.ones( | |
[1, 1], | |
dtype=torch.long, | |
device=device, | |
) * self.llama_tokenizer.bos_token_id | |
) if not self.lora else self.llama_model.model.model.embed_tokens( | |
torch.ones( | |
[1, 1], | |
dtype=torch.long, | |
device=device, | |
) * self.llama_tokenizer.bos_token_id | |
) | |
embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1) | |
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device) | |
# generate | |
output = self.llama_model.generate( | |
inputs_embeds=embeds, | |
max_length=max_length, | |
num_beams=num_beams, | |
do_sample=do_sample, | |
min_length=min_length, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
temperature=temperature, | |
attention_mask=atts, | |
bos_token_id=self.llama_tokenizer.bos_token_id, | |
eos_token_id=self.llama_tokenizer.eos_token_id, | |
pad_token_id=self.llama_tokenizer.pad_token_id | |
) | |
output_text = self.llama_tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True) | |
return output_text | |
def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2): | |
encoder_config = BertConfig() | |
encoder_config.num_hidden_layers = num_hidden_layers | |
encoder_config.encoder_width = speech_width | |
encoder_config.add_cross_attention = True | |
encoder_config.cross_attention_freq = 1 | |
encoder_config.query_length = num_query_token | |
Qformer = BertLMHeadModel(config=encoder_config) | |
query_tokens = nn.Parameter( | |
torch.zeros(1, num_query_token, encoder_config.hidden_size) | |
) | |
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) | |
return Qformer, query_tokens | |