|
import gradio as gr |
|
import json |
|
import torch |
|
import wavio |
|
from tqdm import tqdm |
|
from huggingface_hub import snapshot_download |
|
from models import AudioDiffusion, DDPMScheduler |
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder import AutoencoderKL |
|
from gradio import Markdown |
|
|
|
class Tango: |
|
def __init__(self, name="declare-lab/tango", device="cuda:0"): |
|
|
|
path = snapshot_download(repo_id=name) |
|
|
|
vae_config = json.load(open("{}/vae_config.json".format(path))) |
|
stft_config = json.load(open("{}/stft_config.json".format(path))) |
|
main_config = json.load(open("{}/main_config.json".format(path))) |
|
|
|
self.vae = AutoencoderKL(**vae_config).to(device) |
|
self.stft = TacotronSTFT(**stft_config).to(device) |
|
self.model = AudioDiffusion(**main_config).to(device) |
|
|
|
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) |
|
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) |
|
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) |
|
|
|
self.vae.load_state_dict(vae_weights) |
|
self.stft.load_state_dict(stft_weights) |
|
self.model.load_state_dict(main_weights) |
|
|
|
print ("Successfully loaded checkpoint from:", name) |
|
|
|
self.vae.eval() |
|
self.stft.eval() |
|
self.model.eval() |
|
|
|
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") |
|
|
|
def chunks(self, lst, n): |
|
""" Yield successive n-sized chunks from a list. """ |
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): |
|
""" Genrate audio for a single prompt string. """ |
|
with torch.no_grad(): |
|
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
return wave[0] |
|
|
|
def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): |
|
""" Genrate audio for a list of prompt strings. """ |
|
outputs = [] |
|
for k in tqdm(range(0, len(prompts), batch_size)): |
|
batch = prompts[k: k+batch_size] |
|
with torch.no_grad(): |
|
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
outputs += [item for item in wave] |
|
if samples == 1: |
|
return outputs |
|
else: |
|
return list(self.chunks(outputs, samples)) |
|
|
|
|
|
tango = Tango() |
|
|
|
def gradio_generate(prompt): |
|
|
|
output_wave = tango.generate(prompt) |
|
|
|
|
|
output_filename = "temp_output.wav" |
|
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) |
|
|
|
return output_filename |
|
|
|
|
|
description_text = ''' |
|
TANGO is a latent diffusion model (LDM) for text-to-audio (TTA) generation. TANGO can generate realistic audios including human sounds, animal sounds, natural and artificial sounds and sound effects from textual prompts. We use the frozen instruction-tuned LLM Flan-T5 as the text encoder and train a UNet based diffusion model for audio generation. We perform comparably to current state-of-the-art models for TTA across both objective and subjective metrics, despite training the LDM on a 63 times smaller dataset. We release our model, training, inference code, and pre-trained checkpoints for the research community. |
|
''' |
|
|
|
|
|
input_text = gr.inputs.Textbox(lines=2, label="Prompt") |
|
output_audio = gr.outputs.Audio(label="Generated Audio", type="filepath") |
|
|
|
|
|
gr_interface = gr.Interface( |
|
fn=gradio_generate, |
|
inputs=input_text, |
|
outputs=[output_audio], |
|
title="TANGO: Text to Audio using Instruction-Guided Diffusion", |
|
description="Generate audio using TANGO by providing a text prompt.", |
|
allow_flagging=False, |
|
examples=[ |
|
["An audience cheering and clapping"], |
|
["Rolling thunder with lightning strikes"], |
|
["A car engine revving"], |
|
["A dog barking"], |
|
["Emergency sirens wailing"], |
|
["Whistling with birds chirping"], |
|
["A dog barking and a man talking and a racing car passes by"], |
|
["Motor vehicles are driving with loud engines and a person whistles"], |
|
["People cheering in a stadium while rolling thunder and lightning strikes"], |
|
["A helicopter is in flight"], |
|
["A person snoring"] |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
gr_interface.launch() |