Spaces:
Runtime error
Runtime error
vincentclaes
commited on
Commit
•
2b6b509
1
Parent(s):
a043b64
initial commit
Browse files- README.md +12 -5
- app.py +540 -0
- bill_of_lading_1.png +0 -0
- japanese-invoice.png +0 -0
- packages.txt +4 -0
- packages.txt +1 -0
- requirements.txt +7 -0
- scenario-1.png +0 -0
- scenario-2.png +0 -0
- scenario-3.png +0 -0
- scenario-4.png +0 -0
- scenario-5.png +0 -0
README.md
CHANGED
@@ -1,12 +1,19 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: DocumentQAComparator
|
3 |
+
emoji: 🤖🦾⚙️
|
4 |
+
colorFrom: white
|
5 |
+
colorTo: white
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.18.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
## Setup + Run
|
16 |
+
```
|
17 |
+
pip install -r requirements.txt
|
18 |
+
python app.py
|
19 |
+
```
|
app.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import boto3
|
4 |
+
import traceback
|
5 |
+
import re
|
6 |
+
import logging
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
from PIL import Image, ImageDraw
|
10 |
+
|
11 |
+
from docquery.document import load_document, ImageDocument
|
12 |
+
from docquery.ocr_reader import get_ocr_reader
|
13 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
14 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
15 |
+
from transformers import pipeline
|
16 |
+
|
17 |
+
# avoid ssl errors
|
18 |
+
import ssl
|
19 |
+
|
20 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
21 |
+
|
22 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
+
|
24 |
+
logging.basicConfig(level=logging.DEBUG)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
# Init models
|
28 |
+
|
29 |
+
layoutlm_pipeline = pipeline(
|
30 |
+
"document-question-answering",
|
31 |
+
model="impira/layoutlm-document-qa",
|
32 |
+
)
|
33 |
+
lilt_tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-infoxlm-base")
|
34 |
+
lilt_model = AutoModelForQuestionAnswering.from_pretrained(
|
35 |
+
"nielsr/lilt-xlm-roberta-base"
|
36 |
+
)
|
37 |
+
|
38 |
+
donut_processor = DonutProcessor.from_pretrained(
|
39 |
+
"naver-clova-ix/donut-base-finetuned-docvqa"
|
40 |
+
)
|
41 |
+
donut_model = VisionEncoderDecoderModel.from_pretrained(
|
42 |
+
"naver-clova-ix/donut-base-finetuned-docvqa"
|
43 |
+
)
|
44 |
+
|
45 |
+
TEXTRACT = "Textract Query"
|
46 |
+
LAYOUTLM = "LayoutLM"
|
47 |
+
DONUT = "Donut"
|
48 |
+
LILT = "LiLT"
|
49 |
+
|
50 |
+
|
51 |
+
def image_to_byte_array(image: Image) -> bytes:
|
52 |
+
image_as_byte_array = io.BytesIO()
|
53 |
+
image.save(image_as_byte_array, format="PNG")
|
54 |
+
image_as_byte_array = image_as_byte_array.getvalue()
|
55 |
+
return image_as_byte_array
|
56 |
+
|
57 |
+
|
58 |
+
def run_textract(question, document):
|
59 |
+
logger.info(f"Running Textract model.")
|
60 |
+
image_as_byte_base64 = image_to_byte_array(image=document.b)
|
61 |
+
response = boto3.client("textract").analyze_document(
|
62 |
+
Document={
|
63 |
+
"Bytes": image_as_byte_base64,
|
64 |
+
},
|
65 |
+
FeatureTypes=[
|
66 |
+
"QUERIES",
|
67 |
+
],
|
68 |
+
QueriesConfig={
|
69 |
+
"Queries": [
|
70 |
+
{
|
71 |
+
"Text": question,
|
72 |
+
"Pages": [
|
73 |
+
"*",
|
74 |
+
],
|
75 |
+
},
|
76 |
+
]
|
77 |
+
},
|
78 |
+
)
|
79 |
+
logger.info(f"Output of Textract model {response}.")
|
80 |
+
for element in response["Blocks"]:
|
81 |
+
if element["BlockType"] == "QUERY_RESULT":
|
82 |
+
return {
|
83 |
+
"score": element["Confidence"],
|
84 |
+
"answer": element["Text"],
|
85 |
+
# "word_ids": element
|
86 |
+
}
|
87 |
+
else:
|
88 |
+
Exception("No QUERY_RESULT found in the response from Textract.")
|
89 |
+
|
90 |
+
|
91 |
+
def run_layoutlm(question, document):
|
92 |
+
logger.info(f"Running layoutlm model.")
|
93 |
+
result = layoutlm_pipeline(document.context["image"][0][0], question)[0]
|
94 |
+
logger.info(f"Output of layoutlm model {result}.")
|
95 |
+
# [{'score': 0.9999411106109619, 'answer': 'LETTER OF CREDIT', 'start': 106, 'end': 108}]
|
96 |
+
return {
|
97 |
+
"score": result["score"],
|
98 |
+
"answer": result["answer"],
|
99 |
+
"word_ids": [result["start"], result["end"]],
|
100 |
+
"page": 0,
|
101 |
+
}
|
102 |
+
|
103 |
+
|
104 |
+
def run_lilt(question, document):
|
105 |
+
logger.info(f"Running lilt model.")
|
106 |
+
# use this model + tokenizer
|
107 |
+
processed_document = document.context["image"][0][1]
|
108 |
+
words = [x[0] for x in processed_document]
|
109 |
+
boxes = [x[1] for x in processed_document]
|
110 |
+
|
111 |
+
encoding = lilt_tokenizer(
|
112 |
+
text=question,
|
113 |
+
text_pair=words,
|
114 |
+
boxes=boxes,
|
115 |
+
add_special_tokens=True,
|
116 |
+
return_tensors="pt",
|
117 |
+
)
|
118 |
+
outputs = lilt_model(**encoding)
|
119 |
+
logger.info(f"Output for lilt model {outputs}.")
|
120 |
+
|
121 |
+
answer_start_index = outputs.start_logits.argmax()
|
122 |
+
answer_end_index = outputs.end_logits.argmax()
|
123 |
+
|
124 |
+
predict_answer_tokens = encoding.input_ids[
|
125 |
+
0, answer_start_index: answer_end_index + 1
|
126 |
+
]
|
127 |
+
predict_answer = lilt_tokenizer.decode(
|
128 |
+
predict_answer_tokens, skip_special_tokens=True
|
129 |
+
)
|
130 |
+
return {
|
131 |
+
"score": "n/a",
|
132 |
+
"answer": predict_answer,
|
133 |
+
# "word_ids": element
|
134 |
+
}
|
135 |
+
|
136 |
+
|
137 |
+
def run_donut(question, document):
|
138 |
+
logger.info(f"Running donut model.")
|
139 |
+
# prepare encoder inputs
|
140 |
+
pixel_values = donut_processor(
|
141 |
+
document.context["image"][0][0], return_tensors="pt"
|
142 |
+
).pixel_values
|
143 |
+
|
144 |
+
# prepare decoder inputs
|
145 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
146 |
+
prompt = task_prompt.replace("{user_input}", question)
|
147 |
+
decoder_input_ids = donut_processor.tokenizer(
|
148 |
+
prompt, add_special_tokens=False, return_tensors="pt"
|
149 |
+
).input_ids
|
150 |
+
|
151 |
+
# generate answer
|
152 |
+
outputs = donut_model.generate(
|
153 |
+
pixel_values,
|
154 |
+
decoder_input_ids=decoder_input_ids,
|
155 |
+
max_length=donut_model.decoder.config.max_position_embeddings,
|
156 |
+
early_stopping=True,
|
157 |
+
pad_token_id=donut_processor.tokenizer.pad_token_id,
|
158 |
+
eos_token_id=donut_processor.tokenizer.eos_token_id,
|
159 |
+
use_cache=True,
|
160 |
+
num_beams=1,
|
161 |
+
bad_words_ids=[[donut_processor.tokenizer.unk_token_id]],
|
162 |
+
return_dict_in_generate=True,
|
163 |
+
)
|
164 |
+
logger.info(f"Output for donut {outputs}")
|
165 |
+
sequence = donut_processor.batch_decode(outputs.sequences)[0]
|
166 |
+
sequence = sequence.replace(donut_processor.tokenizer.eos_token, "").replace(
|
167 |
+
donut_processor.tokenizer.pad_token, ""
|
168 |
+
)
|
169 |
+
sequence = re.sub(
|
170 |
+
r"<.*?>", "", sequence, count=1
|
171 |
+
).strip() # remove first task start token
|
172 |
+
|
173 |
+
result = donut_processor.token2json(sequence)
|
174 |
+
return {
|
175 |
+
"score": "n/a",
|
176 |
+
"answer": result["answer"],
|
177 |
+
# "word_ids": element
|
178 |
+
}
|
179 |
+
|
180 |
+
|
181 |
+
def process_path(path):
|
182 |
+
error = None
|
183 |
+
if path:
|
184 |
+
try:
|
185 |
+
document = load_document(path)
|
186 |
+
return (
|
187 |
+
document,
|
188 |
+
gr.update(visible=True, value=document.preview),
|
189 |
+
gr.update(visible=True),
|
190 |
+
gr.update(visible=False, value=None),
|
191 |
+
gr.update(visible=False, value=None),
|
192 |
+
None,
|
193 |
+
)
|
194 |
+
except Exception as e:
|
195 |
+
traceback.print_exc()
|
196 |
+
error = str(e)
|
197 |
+
return (
|
198 |
+
None,
|
199 |
+
gr.update(visible=False, value=None),
|
200 |
+
gr.update(visible=False),
|
201 |
+
gr.update(visible=False, value=None),
|
202 |
+
gr.update(visible=False, value=None),
|
203 |
+
gr.update(visible=True, value=error) if error is not None else None,
|
204 |
+
None,
|
205 |
+
)
|
206 |
+
|
207 |
+
|
208 |
+
def process_upload(file):
|
209 |
+
if file:
|
210 |
+
return process_path(file.name)
|
211 |
+
else:
|
212 |
+
return (
|
213 |
+
None,
|
214 |
+
gr.update(visible=False, value=None),
|
215 |
+
gr.update(visible=False),
|
216 |
+
gr.update(visible=False, value=None),
|
217 |
+
gr.update(visible=False, value=None),
|
218 |
+
None,
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
def lift_word_boxes(document, page):
|
223 |
+
return document.context["image"][page][1]
|
224 |
+
|
225 |
+
|
226 |
+
def expand_bbox(word_boxes):
|
227 |
+
if len(word_boxes) == 0:
|
228 |
+
return None
|
229 |
+
|
230 |
+
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
|
231 |
+
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
|
232 |
+
return [min_x, min_y, max_x, max_y]
|
233 |
+
|
234 |
+
|
235 |
+
# LayoutLM boxes are normalized to 0, 1000
|
236 |
+
def normalize_bbox(box, width, height, padding=0.005):
|
237 |
+
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
|
238 |
+
if padding != 0:
|
239 |
+
min_x = max(0, min_x - padding)
|
240 |
+
min_y = max(0, min_y - padding)
|
241 |
+
max_x = min(max_x + padding, 1)
|
242 |
+
max_y = min(max_y + padding, 1)
|
243 |
+
return [min_x * width, min_y * height, max_x * width, max_y * height]
|
244 |
+
|
245 |
+
|
246 |
+
MODELS = {
|
247 |
+
LAYOUTLM: run_layoutlm,
|
248 |
+
DONUT: run_donut,
|
249 |
+
# LILT: run_lilt,
|
250 |
+
TEXTRACT: run_textract,
|
251 |
+
}
|
252 |
+
|
253 |
+
|
254 |
+
def process_question(question, document, model=list(MODELS.keys())[0]):
|
255 |
+
if not question or document is None:
|
256 |
+
return None, None, None
|
257 |
+
logger.info(f"Running for model {model}")
|
258 |
+
prediction = MODELS[model](question=question, document=document)
|
259 |
+
logger.info(f"Got prediction {prediction}")
|
260 |
+
pages = [x.copy().convert("RGB") for x in document.preview]
|
261 |
+
text_value = prediction["answer"]
|
262 |
+
if "word_ids" in prediction:
|
263 |
+
logger.info(f"Setting bounding boxes.")
|
264 |
+
image = pages[prediction["page"]]
|
265 |
+
draw = ImageDraw.Draw(image, "RGBA")
|
266 |
+
word_boxes = lift_word_boxes(document, prediction["page"])
|
267 |
+
x1, y1, x2, y2 = normalize_bbox(
|
268 |
+
expand_bbox([word_boxes[i] for i in prediction["word_ids"]]),
|
269 |
+
image.width,
|
270 |
+
image.height,
|
271 |
+
)
|
272 |
+
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
|
273 |
+
|
274 |
+
return (
|
275 |
+
gr.update(visible=True, value=pages),
|
276 |
+
gr.update(visible=True, value=prediction),
|
277 |
+
gr.update(
|
278 |
+
visible=True,
|
279 |
+
value=text_value,
|
280 |
+
),
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def load_example_document(img, question, model):
|
285 |
+
if img is not None:
|
286 |
+
document = ImageDocument(Image.fromarray(img), get_ocr_reader())
|
287 |
+
preview, answer, answer_text = process_question(question, document, model)
|
288 |
+
return document, question, preview, gr.update(visible=True), answer, answer_text
|
289 |
+
else:
|
290 |
+
return None, None, None, gr.update(visible=False), None, None
|
291 |
+
|
292 |
+
|
293 |
+
CSS = """
|
294 |
+
#question input {
|
295 |
+
font-size: 16px;
|
296 |
+
}
|
297 |
+
#url-textbox {
|
298 |
+
padding: 0 !important;
|
299 |
+
}
|
300 |
+
#short-upload-box .w-full {
|
301 |
+
min-height: 10rem !important;
|
302 |
+
}
|
303 |
+
/* I think something like this can be used to re-shape
|
304 |
+
* the table
|
305 |
+
*/
|
306 |
+
/*
|
307 |
+
.gr-samples-table tr {
|
308 |
+
display: inline;
|
309 |
+
}
|
310 |
+
.gr-samples-table .p-2 {
|
311 |
+
width: 100px;
|
312 |
+
}
|
313 |
+
*/
|
314 |
+
#select-a-file {
|
315 |
+
width: 100%;
|
316 |
+
}
|
317 |
+
#file-clear {
|
318 |
+
padding-top: 2px !important;
|
319 |
+
padding-bottom: 2px !important;
|
320 |
+
padding-left: 8px !important;
|
321 |
+
padding-right: 8px !important;
|
322 |
+
margin-top: 10px;
|
323 |
+
}
|
324 |
+
.gradio-container .gr-button-primary {
|
325 |
+
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
|
326 |
+
border: 1px solid #B0DCCC;
|
327 |
+
border-radius: 8px;
|
328 |
+
color: #1B8700;
|
329 |
+
}
|
330 |
+
.gradio-container.dark button#submit-button {
|
331 |
+
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
|
332 |
+
border: 1px solid #B0DCCC;
|
333 |
+
border-radius: 8px;
|
334 |
+
color: #1B8700
|
335 |
+
}
|
336 |
+
|
337 |
+
table.gr-samples-table tr td {
|
338 |
+
border: none;
|
339 |
+
outline: none;
|
340 |
+
}
|
341 |
+
|
342 |
+
table.gr-samples-table tr td:first-of-type {
|
343 |
+
width: 0%;
|
344 |
+
}
|
345 |
+
|
346 |
+
div#short-upload-box div.absolute {
|
347 |
+
display: none !important;
|
348 |
+
}
|
349 |
+
|
350 |
+
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
|
351 |
+
gap: 0px 2%;
|
352 |
+
}
|
353 |
+
|
354 |
+
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
|
355 |
+
gap: 0px;
|
356 |
+
}
|
357 |
+
|
358 |
+
gradio-app h2, .gradio-app h2 {
|
359 |
+
padding-top: 10px;
|
360 |
+
}
|
361 |
+
|
362 |
+
#answer {
|
363 |
+
overflow-y: scroll;
|
364 |
+
color: white;
|
365 |
+
background: #666;
|
366 |
+
border-color: #666;
|
367 |
+
font-size: 20px;
|
368 |
+
font-weight: bold;
|
369 |
+
}
|
370 |
+
|
371 |
+
#answer span {
|
372 |
+
color: white;
|
373 |
+
}
|
374 |
+
|
375 |
+
#answer textarea {
|
376 |
+
color:white;
|
377 |
+
background: #777;
|
378 |
+
border-color: #777;
|
379 |
+
font-size: 18px;
|
380 |
+
}
|
381 |
+
|
382 |
+
#url-error input {
|
383 |
+
color: red;
|
384 |
+
}
|
385 |
+
"""
|
386 |
+
|
387 |
+
examples = [
|
388 |
+
[
|
389 |
+
"scenario-1.png",
|
390 |
+
"What is the final consignee?",
|
391 |
+
],
|
392 |
+
[
|
393 |
+
"scenario-1.png",
|
394 |
+
"What are the payment terms?",
|
395 |
+
],
|
396 |
+
[
|
397 |
+
"scenario-2.png",
|
398 |
+
"What is the actual manufacturer?",
|
399 |
+
],
|
400 |
+
[
|
401 |
+
"scenario-3.png",
|
402 |
+
'What is the "ship to" destination?',
|
403 |
+
],
|
404 |
+
[
|
405 |
+
"scenario-4.png",
|
406 |
+
"What is the color?",
|
407 |
+
],
|
408 |
+
[
|
409 |
+
"scenario-5.png",
|
410 |
+
'What is the "said to contain"?',
|
411 |
+
],
|
412 |
+
[
|
413 |
+
"scenario-5.png",
|
414 |
+
'What is the "Net Weight"?',
|
415 |
+
],
|
416 |
+
[
|
417 |
+
"scenario-5.png",
|
418 |
+
'What is the "Freight Collect"?',
|
419 |
+
],
|
420 |
+
[
|
421 |
+
"bill_of_lading_1.png",
|
422 |
+
"What is the shipper?",
|
423 |
+
],
|
424 |
+
[
|
425 |
+
"japanese-invoice.png",
|
426 |
+
"What is the total amount?",
|
427 |
+
]
|
428 |
+
]
|
429 |
+
|
430 |
+
with gr.Blocks(css=CSS) as demo:
|
431 |
+
gr.Markdown("# Document Question Answer Comparator")
|
432 |
+
gr.Markdown("""
|
433 |
+
This space compares some of the latest models that can be used commercially.
|
434 |
+
- [LayoutLM](https://huggingface.co/impira/layoutlm-document-qa) uses text/layout and images. Uses tesseract for OCR.
|
435 |
+
- [Donut](https://huggingface.co/naver-clova-ix/donut-base-finetuned-docvqa) OCR free document understanding. Uses vision encoder for OCR and a text decoder for providing the answer.
|
436 |
+
- [Textract Query](https://docs.aws.amazon.com/textract/latest/dg/what-is.html) OCR + document understanding solution of AWS.
|
437 |
+
""")
|
438 |
+
|
439 |
+
document = gr.Variable()
|
440 |
+
example_question = gr.Textbox(visible=False)
|
441 |
+
example_image = gr.Image(visible=False)
|
442 |
+
|
443 |
+
with gr.Row(equal_height=True):
|
444 |
+
with gr.Column():
|
445 |
+
with gr.Row():
|
446 |
+
gr.Markdown("## 1. Select a file", elem_id="select-a-file")
|
447 |
+
img_clear_button = gr.Button(
|
448 |
+
"Clear", variant="secondary", elem_id="file-clear", visible=False
|
449 |
+
)
|
450 |
+
image = gr.Gallery(visible=False)
|
451 |
+
upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
|
452 |
+
gr.Examples(
|
453 |
+
examples=examples,
|
454 |
+
inputs=[example_image, example_question],
|
455 |
+
)
|
456 |
+
|
457 |
+
with gr.Column() as col:
|
458 |
+
gr.Markdown("## 2. Ask a question")
|
459 |
+
question = gr.Textbox(
|
460 |
+
label="Question",
|
461 |
+
placeholder="e.g. What is the invoice number?",
|
462 |
+
lines=1,
|
463 |
+
max_lines=1,
|
464 |
+
)
|
465 |
+
model = gr.Radio(
|
466 |
+
choices=list(MODELS.keys()),
|
467 |
+
value=list(MODELS.keys())[0],
|
468 |
+
label="Model",
|
469 |
+
)
|
470 |
+
|
471 |
+
with gr.Row():
|
472 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
473 |
+
submit_button = gr.Button(
|
474 |
+
"Submit", variant="primary", elem_id="submit-button"
|
475 |
+
)
|
476 |
+
with gr.Column():
|
477 |
+
output_text = gr.Textbox(
|
478 |
+
label="Top Answer", visible=False, elem_id="answer"
|
479 |
+
)
|
480 |
+
output = gr.JSON(label="Output", visible=False)
|
481 |
+
|
482 |
+
for cb in [img_clear_button, clear_button]:
|
483 |
+
cb.click(
|
484 |
+
lambda _: (
|
485 |
+
gr.update(visible=False, value=None),
|
486 |
+
None,
|
487 |
+
gr.update(visible=False, value=None),
|
488 |
+
gr.update(visible=False, value=None),
|
489 |
+
gr.update(visible=False),
|
490 |
+
None,
|
491 |
+
None,
|
492 |
+
None,
|
493 |
+
gr.update(visible=False, value=None),
|
494 |
+
None,
|
495 |
+
),
|
496 |
+
inputs=clear_button,
|
497 |
+
outputs=[
|
498 |
+
image,
|
499 |
+
document,
|
500 |
+
output,
|
501 |
+
output_text,
|
502 |
+
img_clear_button,
|
503 |
+
example_image,
|
504 |
+
upload,
|
505 |
+
question,
|
506 |
+
],
|
507 |
+
)
|
508 |
+
|
509 |
+
upload.change(
|
510 |
+
fn=process_upload,
|
511 |
+
inputs=[upload],
|
512 |
+
outputs=[document, image, img_clear_button, output, output_text],
|
513 |
+
)
|
514 |
+
|
515 |
+
question.submit(
|
516 |
+
fn=process_question,
|
517 |
+
inputs=[question, document, model],
|
518 |
+
outputs=[image, output, output_text],
|
519 |
+
)
|
520 |
+
|
521 |
+
submit_button.click(
|
522 |
+
process_question,
|
523 |
+
inputs=[question, document, model],
|
524 |
+
outputs=[image, output, output_text],
|
525 |
+
)
|
526 |
+
|
527 |
+
model.change(
|
528 |
+
process_question,
|
529 |
+
inputs=[question, document, model],
|
530 |
+
outputs=[image, output, output_text],
|
531 |
+
)
|
532 |
+
|
533 |
+
example_image.change(
|
534 |
+
fn=load_example_document,
|
535 |
+
inputs=[example_image, example_question, model],
|
536 |
+
outputs=[document, question, image, img_clear_button, output, output_text],
|
537 |
+
)
|
538 |
+
|
539 |
+
if __name__ == "__main__":
|
540 |
+
demo.launch(enable_queue=False)
|
bill_of_lading_1.png
ADDED
japanese-invoice.png
ADDED
packages.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
poppler-utils
|
2 |
+
tesseract-ocr
|
3 |
+
chromium
|
4 |
+
chromium-driver
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tesseract-ocr
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torc
|
2 |
+
docquery[web,donut]
|
3 |
+
transformers
|
4 |
+
gradio
|
5 |
+
boto3
|
6 |
+
pillow
|
7 |
+
|
scenario-1.png
ADDED
scenario-2.png
ADDED
scenario-3.png
ADDED
scenario-4.png
ADDED
scenario-5.png
ADDED