import torch import sys from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import json tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-2b-it') # Configure 4-bit quantization using BitsAndBytesConfig quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", ) # Load the model with the quantization configuration model = AutoModelForCausalLM.from_pretrained( 'google/gemma-2-2b-it', device_map="auto", quantization_config=quantization_config, ) # Definir el prompt para generar un JSON con eventos anidados prompt = ( "Genera un JSON que describa una serie de eventos consecutivos en un formato similar al siguiente:\n\n" "{\n" " \"events\": {\n" " \"event\": {\n" " \"event_number\": 1,\n" " \"name\": \"conflict_start\",\n" " \"description\": \"Tensions escalate between Iran and Israel\",\n" " \"probability\": 70,\n" " \"duration_days\": 30,\n" " \"subevents\": {\n" " \"event\": {\n" " \"event_number\": 2,\n" " \"name\": \"diplomatic_failure\",\n" " \"description\": \"Diplomatic negotiations fail\",\n" " \"probability\": 60,\n" " \"duration_days\": 15,\n" " \"subevents\": {\n" " \"event\": {\n" " \"event_number\": 3,\n" " \"name\": \"military_clash\",\n" " \"description\": \"Initial military clash at the border\",\n" " \"probability\": 50,\n" " \"duration_days\": 10,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 4,\n" " \"name\": \"escalation\",\n" " \"description\": \"Conflict escalates into full-scale war\",\n" " \"probability\": 40,\n" " \"duration_days\": 180,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 5,\n" " \"name\": \"regional_involvement\",\n" " \"description\": \"Other Middle Eastern countries get involved\",\n" " \"probability\": 30,\n" " \"duration_days\": 365,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 6,\n" " \"name\": \"ceasefire\",\n" " \"description\": \"International powers broker a ceasefire\",\n" " \"probability\": 20,\n" " \"duration_days\": 30\n" " },\n" " {\n" " \"event_number\": 7,\n" " \"name\": \"prolonged_conflict\",\n" " \"description\": \"Conflict continues for over a year\",\n" " \"probability\": 50,\n" " \"duration_days\": 365\n" " }\n" " ]\n" " }\n" " },\n" " {\n" " \"event_number\": 8,\n" " \"name\": \"international_intervention\",\n" " \"description\": \"UN or other international organizations intervene\",\n" " \"probability\": 25,\n" " \"duration_days\": 60\n" " }\n" " ]\n" " }\n" " },\n" " {\n" " \"event_number\": 9,\n" " \"name\": \"containment\",\n" " \"description\": \"Conflict is contained and doesn't escalate\",\n" " \"probability\": 30,\n" " \"duration_days\": 90\n" " }\n" " ]\n" " }\n" " },\n" " \"event\": {\n" " \"event_number\": 10,\n" " \"name\": \"sanctions\",\n" " \"description\": \"Increased sanctions on Iran\",\n" " \"probability\": 70,\n" " \"duration_days\": 180,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 11,\n" " \"name\": \"iran_retaliates\",\n" " \"description\": \"Iran retaliates with cyberattacks\",\n" " \"probability\": 40,\n" " \"duration_days\": 60\n" " },\n" " {\n" " \"event_number\": 12,\n" " \"name\": \"israel_response\",\n" " \"description\": \"Israel responds with targeted airstrikes\",\n" " \"probability\": 50,\n" " \"duration_days\": 60\n" " }\n" " ]\n" " }\n" " }\n" " }\n" " },\n" " \"event\": {\n" " \"event_number\": 13,\n" " \"name\": \"diplomatic_success\",\n" " \"description\": \"Successful diplomatic negotiations\",\n" " \"probability\": 40,\n" " \"duration_days\": 30,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 14,\n" " \"name\": \"peace_agreement\",\n" " \"description\": \"Iran and Israel sign a peace agreement\",\n" " \"probability\": 20,\n" " \"duration_days\": 60\n" " },\n" " {\n" " \"event_number\": 15,\n" " \"name\": \"temporary_truce\",\n" " \"description\": \"A temporary truce is established\",\n" " \"probability\": 30,\n" " \"duration_days\": 30\n" " }\n" " ]\n" " }\n" " }\n" " }\n" " }\n" " }\n" "}\n\n" "Ahora, genera un JSON similar con eventos anidados, pero cambia los detalles y nĂºmeros para hacer que sea con el input que viene a continuacion, respondiendo solo el JSON empezando con :" ) def generate(event): combined_input = f"{prompt} {event}" # Combine prompt and event prompt_msg = [{'role': 'user', 'content': combined_input}] inputs = tokenizer.apply_chat_template( prompt_msg, add_generation_prompt=True, return_tensors='pt' ) tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.5, do_sample=True ) output_text = tokenizer.decode(tokens[0], skip_special_tokens=False) print(output_text) user_prompt_length = len(f"user\n{prompt}\n{event}\nmodel\n") json_start_index = output_text.find("") json_end_index = output_text.find("") if json_start_index != -1 and json_end_index != -1: json_string = output_text[max(json_start_index + 6, user_prompt_length):json_end_index].strip() # Remove any leading/trailing non-JSON characters (if present) if not json_string.startswith("{"): first_brace_index = json_string.find("{") if first_brace_index != -1: json_string = json_string[first_brace_index:] if not json_string.endswith("}"): last_brace_index = json_string.rfind("}") if last_brace_index != -1: json_string = json_string[:last_brace_index + 1] # Load JSON without validation try: data = json.loads(json_string) return data # Return the parsed JSON data except json.JSONDecodeError as e: return f"Error: Invalid JSON - {e}" else: return "Error: or not found in generated output"