MMOCR / tools /deployment /mmocr_handler.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import base64
import os
import mmcv
import torch
from ts.torch_handler.base_handler import BaseHandler
from mmocr.apis import init_detector, model_inference
from mmocr.datasets.pipelines import * # NOQA
class MMOCRHandler(BaseHandler):
threshold = 0.5
def initialize(self, context):
properties = context.system_properties
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(self.map_location + ':' +
str(properties.get('gpu_id')) if torch.cuda.
is_available() else self.map_location)
self.manifest = context.manifest
model_dir = properties.get('model_dir')
serialized_file = self.manifest['model']['serializedFile']
checkpoint = os.path.join(model_dir, serialized_file)
self.config_file = os.path.join(model_dir, 'config.py')
self.model = init_detector(self.config_file, checkpoint, self.device)
self.initialized = True
def preprocess(self, data):
images = []
for row in data:
image = row.get('data') or row.get('body')
if isinstance(image, str):
image = base64.b64decode(image)
image = mmcv.imfrombytes(image)
images.append(image)
return images
def inference(self, data, *args, **kwargs):
results = model_inference(self.model, data)
return results
def postprocess(self, data):
# Format output following the example OCRHandler format
return data