MMOCR / tools /data /textrecog /totaltext_converter.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import os
import os.path as osp
import re
import mmcv
import numpy as np
import scipy.io as scio
import yaml
from shapely.geometry import Polygon
from mmocr.datasets.pipelines.crop import crop_img
from mmocr.utils.fileio import list_to_file
def collect_files(img_dir, gt_dir, split):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
split(str): The split of dataset. Namely: training or test
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
# suffixes = ['.png']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
imgs_list = sorted(imgs_list)
ann_list = sorted(
[osp.join(gt_dir, gt_file) for gt_file in os.listdir(gt_dir)])
files = [(img_file, gt_file)
for (img_file, gt_file) in zip(imgs_list, ann_list)]
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info, files)
return images
def get_contours_mat(gt_path):
"""Get the contours and words for each ground_truth mat file.
Args:
gt_path(str): The relative path of the ground_truth mat file
Returns:
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
"""
assert isinstance(gt_path, str)
contours = []
words = []
data = scio.loadmat(gt_path)
data_polygt = data['polygt']
for i, lines in enumerate(data_polygt):
X = np.array(lines[1])
Y = np.array(lines[3])
point_num = len(X[0])
word = lines[4]
if len(word) == 0:
word = '???'
else:
word = word[0]
if word == '#':
word = '###'
continue
words.append(word)
arr = np.concatenate([X, Y]).T
contour = []
for i in range(point_num):
contour.append(arr[i][0])
contour.append(arr[i][1])
contours.append(np.asarray(contour))
return contours, words
def load_mat_info(img_info, gt_file):
"""Load the information of one ground truth in .mat format.
Args:
img_info(dict): The dict of only the image information
gt_file(str): The relative path of the ground_truth mat
file for one image
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(img_info, dict)
assert isinstance(gt_file, str)
contours, words = get_contours_mat(gt_file)
anno_info = []
for contour, word in zip(contours, words):
if contour.shape[0] == 2:
continue
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
anno = dict(word=word, bbox=bbox)
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def process_line(line, contours, words):
"""Get the contours and words by processing each line in the gt file.
Args:
line(str): The line in gt file containing annotation info
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
Returns:
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
"""
line = '{' + line.replace('[[', '[').replace(']]', ']') + '}'
ann_dict = re.sub('([0-9]) +([0-9])', r'\1,\2', line)
ann_dict = re.sub('([0-9]) +([ 0-9])', r'\1,\2', ann_dict)
ann_dict = re.sub('([0-9]) -([0-9])', r'\1,-\2', ann_dict)
ann_dict = ann_dict.replace("[u',']", "[u'#']")
ann_dict = yaml.safe_load(ann_dict)
X = np.array([ann_dict['x']])
Y = np.array([ann_dict['y']])
if len(ann_dict['transcriptions']) == 0:
word = '???'
else:
word = ann_dict['transcriptions'][0]
if len(ann_dict['transcriptions']) > 1:
for ann_word in ann_dict['transcriptions'][1:]:
word += ',' + ann_word
word = str(eval(word))
words.append(word)
point_num = len(X[0])
arr = np.concatenate([X, Y]).T
contour = []
for i in range(point_num):
contour.append(arr[i][0])
contour.append(arr[i][1])
contours.append(np.asarray(contour))
return contours, words
def get_contours_txt(gt_path):
"""Get the contours and words for each ground_truth txt file.
Args:
gt_path(str): The relative path of the ground_truth mat file
Returns:
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
"""
assert isinstance(gt_path, str)
contours = []
words = []
with open(gt_path, 'r') as f:
tmp_line = ''
for idx, line in enumerate(f):
line = line.strip()
if idx == 0:
tmp_line = line
continue
if not line.startswith('x:'):
tmp_line += ' ' + line
continue
else:
complete_line = tmp_line
tmp_line = line
contours, words = process_line(complete_line, contours, words)
if tmp_line != '':
contours, words = process_line(tmp_line, contours, words)
for word in words:
if word == '#':
word = '###'
continue
return contours, words
def load_txt_info(gt_file, img_info):
"""Load the information of one ground truth in .txt format.
Args:
img_info(dict): The dict of only the image information
gt_file(str): The relative path of the ground_truth mat
file for one image
Returns:
img_info(dict): The dict of the img and annotation information
"""
contours, words = get_contours_txt(gt_file)
anno_info = []
for contour, word in zip(contours, words):
if contour.shape[0] == 2:
continue
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
anno = dict(word=word, bbox=bbox)
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def generate_ann(root_path, split, image_infos):
"""Generate cropped annotations and label txt file.
Args:
root_path(str): The relative path of the totaltext file
split(str): The split of dataset. Namely: training or test
image_infos(list[dict]): A list of dicts of the img and
annotation information
"""
dst_image_root = osp.join(root_path, 'dst_imgs', split)
if split == 'training':
dst_label_file = osp.join(root_path, 'train_label.txt')
elif split == 'test':
dst_label_file = osp.join(root_path, 'test_label.txt')
os.makedirs(dst_image_root, exist_ok=True)
lines = []
for image_info in image_infos:
index = 1
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
image = mmcv.imread(src_img_path)
src_img_root = osp.splitext(image_info['file_name'])[0].split('/')[1]
for anno in image_info['anno_info']:
word = anno['word']
dst_img = crop_img(image, anno['bbox'])
# Skip invalid annotations
if min(dst_img.shape) == 0:
continue
dst_img_name = f'{src_img_root}_{index}.png'
index += 1
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
f'{word}')
list_to_file(dst_label_file, lines)
def load_img_info(files):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.mat':
img_info = load_mat_info(img_info, gt_file)
elif osp.splitext(gt_file)[1] == '.txt':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert totaltext annotations to COCO format')
parser.add_argument('root_path', help='totaltext root path')
parser.add_argument('-o', '--out-dir', help='output path')
parser.add_argument(
'--split-list',
nargs='+',
help='a list of splits. e.g., "--split_list training test"')
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
out_dir = args.out_dir if args.out_dir else root_path
mmcv.mkdir_or_exist(out_dir)
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(
print_tmpl='It takes {}s to convert totaltext annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split), split)
image_infos = collect_annotations(files, nproc=args.nproc)
generate_ann(root_path, split, image_infos)
if __name__ == '__main__':
main()