Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import math | |
import os | |
import os.path as osp | |
import mmcv | |
from mmocr.utils import convert_annotations | |
def collect_files(img_dir, gt_dir): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir (str): The image directory | |
gt_dir (str): The groundtruth directory | |
Returns: | |
files (list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
ann_list, imgs_list = [], [] | |
for gt_file in os.listdir(gt_dir): | |
ann_list.append(osp.join(gt_dir, gt_file)) | |
imgs_list.append(osp.join(img_dir, gt_file.replace('.json', '.png'))) | |
files = list(zip(sorted(imgs_list), sorted(ann_list))) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files (list): The list of tuples (image_file, groundtruth_file) | |
nproc (int): The number of process to collect annotations | |
Returns: | |
images (list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmcv.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmcv.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files (tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( | |
'.')[0] | |
# read imgs while ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
img_info = dict( | |
file_name=osp.join(osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
segm_file=osp.join(osp.basename(gt_file))) | |
if osp.splitext(gt_file)[1] == '.json': | |
img_info = load_json_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def load_json_info(gt_file, img_info): | |
"""Collect the annotation information. | |
Args: | |
gt_file (str): The path to ground-truth | |
img_info (dict): The dict of the img and annotation information | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
annotation = mmcv.load(gt_file) | |
anno_info = [] | |
for form in annotation['form']: | |
for ann in form['words']: | |
iscrowd = 1 if len(ann['text']) == 0 else 0 | |
x1, y1, x2, y2 = ann['box'] | |
x = max(0, min(math.floor(x1), math.floor(x2))) | |
y = max(0, min(math.floor(y1), math.floor(y2))) | |
w, h = math.ceil(abs(x2 - x1)), math.ceil(abs(y2 - y1)) | |
bbox = [x, y, w, h] | |
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=1, | |
bbox=bbox, | |
area=w * h, | |
segmentation=[segmentation]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and test set of FUNSD ') | |
parser.add_argument('root_path', help='Root dir path of FUNSD') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
for split in ['training', 'test']: | |
print(f'Processing {split} set...') | |
with mmcv.Timer(print_tmpl='It takes {}s to convert FUNSD annotation'): | |
files = collect_files( | |
osp.join(root_path, 'imgs'), | |
osp.join(root_path, 'annotations', split)) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
convert_annotations( | |
image_infos, osp.join(root_path, | |
'instances_' + split + '.json')) | |
if __name__ == '__main__': | |
main() | |