MMOCR / tests /test_models /test_recognizer.py
tomofi's picture
Add application file
2366e36
raw
history blame
5.85 kB
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from functools import partial
import numpy as np
import pytest
import torch
from mmdet.core import BitmapMasks
from mmocr.models.textrecog.recognizer import (EncodeDecodeRecognizer,
SegRecognizer)
def _create_dummy_dict_file(dict_file):
chars = list('helowrd')
with open(dict_file, 'w') as fw:
for char in chars:
fw.write(char + '\n')
def test_base_recognizer():
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
dict_file = osp.join(tmp_dir.name, 'fake_chars.txt')
_create_dummy_dict_file(dict_file)
label_convertor = dict(
type='CTCConvertor', dict_file=dict_file, with_unknown=False)
preprocessor = None
backbone = dict(type='VeryDeepVgg', leaky_relu=False)
encoder = None
decoder = dict(type='CRNNDecoder', in_channels=512, rnn_flag=True)
loss = dict(type='CTCLoss')
with pytest.raises(AssertionError):
EncodeDecodeRecognizer(backbone=None)
with pytest.raises(AssertionError):
EncodeDecodeRecognizer(decoder=None)
with pytest.raises(AssertionError):
EncodeDecodeRecognizer(loss=None)
with pytest.raises(AssertionError):
EncodeDecodeRecognizer(label_convertor=None)
recognizer = EncodeDecodeRecognizer(
preprocessor=preprocessor,
backbone=backbone,
encoder=encoder,
decoder=decoder,
loss=loss,
label_convertor=label_convertor)
recognizer.init_weights()
recognizer.train()
imgs = torch.rand(1, 3, 32, 160)
# test extract feat
feat = recognizer.extract_feat(imgs)
assert feat.shape == torch.Size([1, 512, 1, 41])
# test forward train
img_metas = [{
'text': 'hello',
'resize_shape': (32, 120, 3),
'valid_ratio': 1.0
}]
losses = recognizer.forward_train(imgs, img_metas)
assert isinstance(losses, dict)
assert 'loss_ctc' in losses
# test simple test
results = recognizer.simple_test(imgs, img_metas)
assert isinstance(results, list)
assert isinstance(results[0], dict)
assert 'text' in results[0]
assert 'score' in results[0]
# test onnx export
recognizer.forward = partial(
recognizer.simple_test,
img_metas=img_metas,
return_loss=False,
rescale=True)
with tempfile.TemporaryDirectory() as tmpdirname:
onnx_path = f'{tmpdirname}/tmp.onnx'
torch.onnx.export(
recognizer, (imgs, ),
onnx_path,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False)
# test aug_test
aug_results = recognizer.aug_test([imgs, imgs], [img_metas, img_metas])
assert isinstance(aug_results, list)
assert isinstance(aug_results[0], dict)
assert 'text' in aug_results[0]
assert 'score' in aug_results[0]
tmp_dir.cleanup()
def test_seg_recognizer():
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
dict_file = osp.join(tmp_dir.name, 'fake_chars.txt')
_create_dummy_dict_file(dict_file)
label_convertor = dict(
type='SegConvertor', dict_file=dict_file, with_unknown=False)
preprocessor = None
backbone = dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
out_indices=[0, 1, 2, 3],
stage4_pool_cfg=dict(kernel_size=2, stride=2),
last_stage_pool=True)
neck = dict(
type='FPNOCR', in_channels=[128, 256, 512, 512], out_channels=256)
head = dict(
type='SegHead',
in_channels=256,
upsample_param=dict(scale_factor=2.0, mode='nearest'))
loss = dict(type='SegLoss', seg_downsample_ratio=1.0)
with pytest.raises(AssertionError):
SegRecognizer(backbone=None)
with pytest.raises(AssertionError):
SegRecognizer(neck=None)
with pytest.raises(AssertionError):
SegRecognizer(head=None)
with pytest.raises(AssertionError):
SegRecognizer(loss=None)
with pytest.raises(AssertionError):
SegRecognizer(label_convertor=None)
recognizer = SegRecognizer(
preprocessor=preprocessor,
backbone=backbone,
neck=neck,
head=head,
loss=loss,
label_convertor=label_convertor)
recognizer.init_weights()
recognizer.train()
imgs = torch.rand(1, 3, 64, 256)
# test extract feat
feats = recognizer.extract_feat(imgs)
assert len(feats) == 4
assert feats[0].shape == torch.Size([1, 128, 32, 128])
assert feats[1].shape == torch.Size([1, 256, 16, 64])
assert feats[2].shape == torch.Size([1, 512, 8, 32])
assert feats[3].shape == torch.Size([1, 512, 4, 16])
attn_tgt = np.zeros((64, 256), dtype=np.float32)
segm_tgt = np.zeros((64, 256), dtype=np.float32)
mask = np.zeros((64, 256), dtype=np.float32)
gt_kernels = BitmapMasks([attn_tgt, segm_tgt, mask], 64, 256)
# test forward train
img_metas = [{
'text': 'hello',
'resize_shape': (64, 256, 3),
'valid_ratio': 1.0
}]
losses = recognizer.forward_train(imgs, img_metas, gt_kernels=[gt_kernels])
assert isinstance(losses, dict)
# test simple test
results = recognizer.simple_test(imgs, img_metas)
assert isinstance(results, list)
assert isinstance(results[0], dict)
assert 'text' in results[0]
assert 'score' in results[0]
# test aug_test
aug_results = recognizer.aug_test([imgs, imgs], [img_metas, img_metas])
assert isinstance(aug_results, list)
assert isinstance(aug_results[0], dict)
assert 'text' in aug_results[0]
assert 'score' in aug_results[0]
tmp_dir.cleanup()