Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
from os.path import dirname, exists, join | |
import numpy as np | |
import pytest | |
import torch | |
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300), | |
num_items=None): # yapf: disable | |
"""Create a superset of inputs needed to run test or train batches. | |
Args: | |
input_shape (tuple): Input batch dimensions. | |
num_items (None | list[int]): Specifies the number of boxes | |
for each batch item. | |
""" | |
(N, C, H, W) = input_shape | |
rng = np.random.RandomState(0) | |
imgs = rng.rand(*input_shape) | |
img_metas = [{ | |
'img_shape': (H, W, C), | |
'ori_shape': (H, W, C), | |
'pad_shape': (H, W, C), | |
'filename': '<demo>.png', | |
} for _ in range(N)] | |
relations = [torch.randn(10, 10, 5) for _ in range(N)] | |
texts = [torch.ones(10, 16) for _ in range(N)] | |
gt_bboxes = [torch.Tensor([[2, 2, 4, 4]]).expand(10, 4) for _ in range(N)] | |
gt_labels = [torch.ones(10, 11).long() for _ in range(N)] | |
mm_inputs = { | |
'imgs': torch.FloatTensor(imgs).requires_grad_(True), | |
'img_metas': img_metas, | |
'relations': relations, | |
'texts': texts, | |
'gt_bboxes': gt_bboxes, | |
'gt_labels': gt_labels | |
} | |
return mm_inputs | |
def _get_config_directory(): | |
"""Find the predefined detector config directory.""" | |
try: | |
# Assume we are running in the source mmocr repo | |
repo_dpath = dirname(dirname(dirname(__file__))) | |
except NameError: | |
# For IPython development when this __file__ is not defined | |
import mmocr | |
repo_dpath = dirname(dirname(mmocr.__file__)) | |
config_dpath = join(repo_dpath, 'configs') | |
if not exists(config_dpath): | |
raise Exception('Cannot find config path') | |
return config_dpath | |
def _get_config_module(fname): | |
"""Load a configuration as a python module.""" | |
from mmcv import Config | |
config_dpath = _get_config_directory() | |
config_fpath = join(config_dpath, fname) | |
config_mod = Config.fromfile(config_fpath) | |
return config_mod | |
def _get_detector_cfg(fname): | |
"""Grab configs necessary to create a detector. | |
These are deep copied to allow for safe modification of parameters without | |
influencing other tests. | |
""" | |
config = _get_config_module(fname) | |
config.model.class_list = None | |
model = copy.deepcopy(config.model) | |
return model | |
def test_sdmgr_pipeline(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
input_shape = (1, 3, 128, 128) | |
mm_inputs = _demo_mm_inputs(0, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
relations = mm_inputs.pop('relations') | |
texts = mm_inputs.pop('texts') | |
gt_bboxes = mm_inputs.pop('gt_bboxes') | |
gt_labels = mm_inputs.pop('gt_labels') | |
# Test forward train | |
losses = detector.forward( | |
imgs, | |
img_metas, | |
relations=relations, | |
texts=texts, | |
gt_bboxes=gt_bboxes, | |
gt_labels=gt_labels) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
batch_results = [] | |
for idx in range(len(img_metas)): | |
result = detector.forward( | |
imgs[idx:idx + 1], | |
None, | |
return_loss=False, | |
relations=[relations[idx]], | |
texts=[texts[idx]], | |
gt_bboxes=[gt_bboxes[idx]]) | |
batch_results.append(result) | |
# Test show_result | |
results = {'nodes': torch.randn(1, 3)} | |
boxes = [[1, 1, 2, 1, 2, 2, 1, 2]] | |
img = np.random.rand(5, 5, 3) | |
detector.show_result(img, results, boxes) | |