Spaces:
Runtime error
Runtime error
File size: 13,045 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from argparse import ArgumentParser
from functools import partial
import cv2
import numpy as np
import torch
from mmcv.onnx import register_extra_symbolics
from mmcv.parallel import collate
from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from torch import nn
from mmocr.apis import init_detector
from mmocr.core.deployment import ONNXRuntimeDetector, ONNXRuntimeRecognizer
from mmocr.datasets.pipelines.crop import crop_img # noqa: F401
from mmocr.utils import is_2dlist
def _convert_batchnorm(module):
module_output = module
if isinstance(module, torch.nn.SyncBatchNorm):
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
module_output.weight.data = module.weight.data.clone().detach()
module_output.bias.data = module.bias.data.clone().detach()
# keep requires_grad unchanged
module_output.weight.requires_grad = module.weight.requires_grad
module_output.bias.requires_grad = module.bias.requires_grad
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
for name, child in module.named_children():
module_output.add_module(name, _convert_batchnorm(child))
del module
return module_output
def _prepare_data(cfg, imgs):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
Either image files or loaded images.
Returns:
result (dict): Predicted results.
"""
if isinstance(imgs, (list, tuple)):
if not isinstance(imgs[0], (np.ndarray, str)):
raise AssertionError('imgs must be strings or numpy arrays')
elif isinstance(imgs, (np.ndarray, str)):
imgs = [imgs]
else:
raise AssertionError('imgs must be strings or numpy arrays')
is_ndarray = isinstance(imgs[0], np.ndarray)
if is_ndarray:
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = 'LoadImageFromNdarray'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
data = []
for img in imgs:
# prepare data
if is_ndarray:
# directly add img
datum = dict(img=img)
else:
# add information into dict
datum = dict(img_info=dict(filename=img), img_prefix=None)
# build the data pipeline
datum = test_pipeline(datum)
# get tensor from list to stack for batch mode (text detection)
data.append(datum)
if isinstance(data[0]['img'], list) and len(data) > 1:
raise Exception('aug test does not support '
f'inference with batch size '
f'{len(data)}')
data = collate(data, samples_per_gpu=len(imgs))
# process img_metas
if isinstance(data['img_metas'], list):
data['img_metas'] = [
img_metas.data[0] for img_metas in data['img_metas']
]
else:
data['img_metas'] = data['img_metas'].data
if isinstance(data['img'], list):
data['img'] = [img.data for img in data['img']]
if isinstance(data['img'][0], list):
data['img'] = [img[0] for img in data['img']]
else:
data['img'] = data['img'].data
return data
def pytorch2onnx(model: nn.Module,
model_type: str,
img_path: str,
verbose: bool = False,
show: bool = False,
opset_version: int = 11,
output_file: str = 'tmp.onnx',
verify: bool = False,
dynamic_export: bool = False,
device_id: int = 0):
"""Export PyTorch model to ONNX model and verify the outputs are same
between PyTorch and ONNX.
Args:
model (nn.Module): PyTorch model we want to export.
model_type (str): Model type, detection or recognition model.
img_path (str): We need to use this input to execute the model.
opset_version (int): The onnx op version. Default: 11.
verbose (bool): Whether print the computation graph. Default: False.
show (bool): Whether visialize final results. Default: False.
output_file (string): The path to where we store the output ONNX model.
Default: `tmp.onnx`.
verify (bool): Whether compare the outputs between PyTorch and ONNX.
Default: False.
dynamic_export (bool): Whether apply dynamic export.
Default: False.
device_id (id): Device id to place model and data.
Default: 0
"""
device = torch.device(type='cuda', index=device_id)
model.to(device).eval()
_convert_batchnorm(model)
# prepare inputs
mm_inputs = _prepare_data(cfg=model.cfg, imgs=img_path)
imgs = mm_inputs.pop('img')
img_metas = mm_inputs.pop('img_metas')
if isinstance(imgs, list):
imgs = imgs[0]
img_list = [img[None, :].to(device) for img in imgs]
origin_forward = model.forward
if (model_type == 'det'):
model.forward = partial(
model.simple_test, img_metas=img_metas, rescale=True)
else:
model.forward = partial(
model.forward,
img_metas=img_metas,
return_loss=False,
rescale=True)
# pytorch has some bug in pytorch1.3, we have to fix it
# by replacing these existing op
register_extra_symbolics(opset_version)
dynamic_axes = None
if dynamic_export and model_type == 'det':
dynamic_axes = {
'input': {
0: 'batch',
2: 'height',
3: 'width'
},
'output': {
0: 'batch',
2: 'height',
3: 'width'
}
}
elif dynamic_export and model_type == 'recog':
dynamic_axes = {
'input': {
0: 'batch',
3: 'width'
},
'output': {
0: 'batch',
1: 'seq_len',
2: 'num_classes'
}
}
with torch.no_grad():
torch.onnx.export(
model, (img_list[0], ),
output_file,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False,
verbose=verbose,
opset_version=opset_version,
dynamic_axes=dynamic_axes)
print(f'Successfully exported ONNX model: {output_file}')
if verify:
# check by onnx
import onnx
onnx_model = onnx.load(output_file)
onnx.checker.check_model(onnx_model)
scale_factor = (0.5, 0.5) if model_type == 'det' else (1, 0.5)
if dynamic_export:
# scale image for dynamic shape test
img_list = [
nn.functional.interpolate(_, scale_factor=scale_factor)
for _ in img_list
]
if model_type == 'det':
img_metas[0][0][
'scale_factor'] = img_metas[0][0]['scale_factor'] * (
scale_factor * 2)
# check the numerical value
# get pytorch output
with torch.no_grad():
model.forward = origin_forward
pytorch_out = model.simple_test(
img_list[0], img_metas[0], rescale=True)
# get onnx output
if model_type == 'det':
onnx_model = ONNXRuntimeDetector(output_file, model.cfg, device_id)
else:
onnx_model = ONNXRuntimeRecognizer(output_file, model.cfg,
device_id)
onnx_out = onnx_model.simple_test(
img_list[0], img_metas[0], rescale=True)
# compare results
same_diff = 'same'
if model_type == 'recog':
for onnx_result, pytorch_result in zip(onnx_out, pytorch_out):
if onnx_result['text'] != pytorch_result[
'text'] or not np.allclose(
np.array(onnx_result['score']),
np.array(pytorch_result['score']),
rtol=1e-4,
atol=1e-4):
same_diff = 'different'
break
else:
for onnx_result, pytorch_result in zip(
onnx_out[0]['boundary_result'],
pytorch_out[0]['boundary_result']):
if not np.allclose(
np.array(onnx_result),
np.array(pytorch_result),
rtol=1e-4,
atol=1e-4):
same_diff = 'different'
break
print('The outputs are {} between PyTorch and ONNX'.format(same_diff))
if show:
onnx_img = onnx_model.show_result(
img_path, onnx_out[0], out_file='onnx.jpg', show=False)
pytorch_img = model.show_result(
img_path, pytorch_out[0], out_file='pytorch.jpg', show=False)
if onnx_img is None:
onnx_img = cv2.imread(img_path)
if pytorch_img is None:
pytorch_img = cv2.imread(img_path)
cv2.imshow('PyTorch', pytorch_img)
cv2.imshow('ONNXRuntime', onnx_img)
cv2.waitKey()
return
def main():
parser = ArgumentParser(
description='Convert MMOCR models from pytorch to ONNX')
parser.add_argument('model_config', type=str, help='Config file.')
parser.add_argument(
'model_ckpt', type=str, help='Checkpint file (local or url).')
parser.add_argument(
'model_type',
type=str,
help='Detection or recognition model to deploy.',
choices=['recog', 'det'])
parser.add_argument('image_path', type=str, help='Input Image file.')
parser.add_argument(
'--output-file',
type=str,
help='Output file name of the onnx model.',
default='tmp.onnx')
parser.add_argument(
'--device-id', default=0, help='Device used for inference.')
parser.add_argument(
'--opset-version',
type=int,
help='ONNX opset version, default to 11.',
default=11)
parser.add_argument(
'--verify',
action='store_true',
help='Whether verify the outputs of onnx and pytorch are same.',
default=False)
parser.add_argument(
'--verbose',
action='store_true',
help='Whether print the computation graph.',
default=False)
parser.add_argument(
'--show',
action='store_true',
help='Whether visualize final output.',
default=False)
parser.add_argument(
'--dynamic-export',
action='store_true',
help='Whether dynamically export onnx model.',
default=False)
args = parser.parse_args()
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: This tool will be deprecated in future. '
msg += blue_text + 'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)
device = torch.device(type='cuda', index=args.device_id)
# build model
model = init_detector(args.model_config, args.model_ckpt, device=device)
if hasattr(model, 'module'):
model = model.module
if model.cfg.data.test.get('pipeline', None) is None:
if is_2dlist(model.cfg.data.test.datasets):
model.cfg.data.test.pipeline = \
model.cfg.data.test.datasets[0][0].pipeline
else:
model.cfg.data.test.pipeline = \
model.cfg.data.test['datasets'][0].pipeline
if is_2dlist(model.cfg.data.test.pipeline):
model.cfg.data.test.pipeline = model.cfg.data.test.pipeline[0]
pytorch2onnx(
model,
model_type=args.model_type,
output_file=args.output_file,
img_path=args.image_path,
opset_version=args.opset_version,
verify=args.verify,
verbose=args.verbose,
show=args.show,
device_id=args.device_id,
dynamic_export=args.dynamic_export)
if __name__ == '__main__':
main()
|