cord-v2 / receipts_app.py
thinh-researcher's picture
Update
ee0e82a
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
https://github.com/clovaai/donut
"""
import gradio as gr
import torch
from PIL import Image
from donut import DonutModel
def demo_process(input_img):
global pretrained_model, task_prompt, task_name
# input_img = Image.fromarray(input_img)
output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
return output
# task_prompt = f"<s_cord-v2>"
task_prompt = f"<s_receipts>"
device = 'cpu' # 'cuda' if torch.cuda.is_available() else 'cpu'
pretrained_model: DonutModel = DonutModel.from_pretrained("result", local_files_only=True)
pretrained_model.to(device)
pretrained_model.eval()
demo = gr.Interface(
fn=demo_process,
inputs= gr.inputs.Image(type="pil"),
outputs="json",
title=f"Donut 🍩 demonstration for `cord-v2` task",
description="""This model is trained with 800 Indonesian receipt images of CORD dataset. <br>
Demonstrations for other types of documents/tasks are available at https://github.com/clovaai/donut <br>
More CORD receipt images are available at https://huggingface.co/datasets/naver-clova-ix/cord-v2
More details are available at:
- Paper: https://arxiv.org/abs/2111.15664
- GitHub: https://github.com/clovaai/donut""",
examples=[["sample_image_cord_test_receipt_00004.png"], ["sample_image_cord_test_receipt_00012.png"]],
cache_examples=False,
)
demo.launch(server_name="0.0.0.0")