Spaces:
Running
on
Zero
Running
on
Zero
virtual-try-on-image
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tests
/test_checkpoint.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import unittest | |
from collections import OrderedDict | |
import torch | |
from torch import nn | |
from detectron2.checkpoint.c2_model_loading import align_and_update_state_dicts | |
from detectron2.utils.logger import setup_logger | |
class TestCheckpointer(unittest.TestCase): | |
def setUp(self): | |
setup_logger() | |
def create_complex_model(self): | |
m = nn.Module() | |
m.block1 = nn.Module() | |
m.block1.layer1 = nn.Linear(2, 3) | |
m.layer2 = nn.Linear(3, 2) | |
m.res = nn.Module() | |
m.res.layer2 = nn.Linear(3, 2) | |
state_dict = OrderedDict() | |
state_dict["layer1.weight"] = torch.rand(3, 2) | |
state_dict["layer1.bias"] = torch.rand(3) | |
state_dict["layer2.weight"] = torch.rand(2, 3) | |
state_dict["layer2.bias"] = torch.rand(2) | |
state_dict["res.layer2.weight"] = torch.rand(2, 3) | |
state_dict["res.layer2.bias"] = torch.rand(2) | |
return m, state_dict | |
def test_complex_model_loaded(self): | |
for add_data_parallel in [False, True]: | |
model, state_dict = self.create_complex_model() | |
if add_data_parallel: | |
model = nn.DataParallel(model) | |
model_sd = model.state_dict() | |
align_and_update_state_dicts(model_sd, state_dict) | |
for loaded, stored in zip(model_sd.values(), state_dict.values()): | |
# different tensor references | |
self.assertFalse(id(loaded) == id(stored)) | |
# same content | |
self.assertTrue(loaded.equal(stored)) | |
if __name__ == "__main__": | |
unittest.main() | |