Spaces:
Running
on
Zero
Running
on
Zero
virtual-try-on-image
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tests
/data
/test_coco.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import json | |
import numpy as np | |
import os | |
import tempfile | |
import unittest | |
import pycocotools | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.data.datasets.coco import convert_to_coco_dict, load_coco_json | |
from detectron2.structures import BoxMode | |
def make_mask(): | |
""" | |
Makes a donut shaped binary mask. | |
""" | |
H = 100 | |
W = 100 | |
mask = np.zeros([H, W], dtype=np.uint8) | |
for x in range(W): | |
for y in range(H): | |
d = np.linalg.norm(np.array([W, H]) / 2 - np.array([x, y])) | |
if d > 10 and d < 20: | |
mask[y, x] = 1 | |
return mask | |
def make_dataset_dicts(mask): | |
""" | |
Returns a list of dicts that represents a single COCO data point for | |
object detection. The single instance given by `mask` is represented by | |
RLE. | |
""" | |
record = {} | |
record["file_name"] = "test" | |
record["image_id"] = 0 | |
record["height"] = mask.shape[0] | |
record["width"] = mask.shape[1] | |
y, x = np.nonzero(mask) | |
segmentation = pycocotools.mask.encode(np.asarray(mask, order="F")) | |
min_x = np.min(x) | |
max_x = np.max(x) | |
min_y = np.min(y) | |
max_y = np.max(y) | |
obj = { | |
"bbox": [min_x, min_y, max_x, max_y], | |
"bbox_mode": BoxMode.XYXY_ABS, | |
"category_id": 0, | |
"iscrowd": 0, | |
"segmentation": segmentation, | |
} | |
record["annotations"] = [obj] | |
return [record] | |
class TestRLEToJson(unittest.TestCase): | |
def test(self): | |
# Make a dummy dataset. | |
mask = make_mask() | |
DatasetCatalog.register("test_dataset", lambda: make_dataset_dicts(mask)) | |
MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"]) | |
# Dump to json. | |
json_dict = convert_to_coco_dict("test_dataset") | |
with tempfile.TemporaryDirectory() as tmpdir: | |
json_file_name = os.path.join(tmpdir, "test.json") | |
with open(json_file_name, "w") as f: | |
json.dump(json_dict, f) | |
# Load from json. | |
dicts = load_coco_json(json_file_name, "") | |
# Check the loaded mask matches the original. | |
anno = dicts[0]["annotations"][0] | |
loaded_mask = pycocotools.mask.decode(anno["segmentation"]) | |
self.assertTrue(np.array_equal(loaded_mask, mask)) | |