Spaces:
Running
on
Zero
Running
on
Zero
virtual-try-on-image
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/projects
/DensePose
/query_db.py
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import argparse | |
import logging | |
import os | |
import sys | |
from timeit import default_timer as timer | |
from typing import Any, ClassVar, Dict, List | |
import torch | |
from fvcore.common.file_io import PathManager | |
from detectron2.data.catalog import DatasetCatalog | |
from detectron2.utils.logger import setup_logger | |
from densepose.data.structures import DensePoseDataRelative | |
from densepose.utils.dbhelper import EntrySelector | |
from densepose.utils.logger import verbosity_to_level | |
from densepose.vis.base import CompoundVisualizer | |
from densepose.vis.bounding_box import BoundingBoxVisualizer | |
from densepose.vis.densepose import ( | |
DensePoseDataCoarseSegmentationVisualizer, | |
DensePoseDataPointsIVisualizer, | |
DensePoseDataPointsUVisualizer, | |
DensePoseDataPointsVisualizer, | |
DensePoseDataPointsVVisualizer, | |
) | |
DOC = """Query DB - a tool to print / visualize data from a database | |
""" | |
LOGGER_NAME = "query_db" | |
logger = logging.getLogger(LOGGER_NAME) | |
_ACTION_REGISTRY: Dict[str, "Action"] = {} | |
class Action(object): | |
def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
parser.add_argument( | |
"-v", | |
"--verbosity", | |
action="count", | |
help="Verbose mode. Multiple -v options increase the verbosity.", | |
) | |
def register_action(cls: type): | |
""" | |
Decorator for action classes to automate action registration | |
""" | |
global _ACTION_REGISTRY | |
_ACTION_REGISTRY[cls.COMMAND] = cls | |
return cls | |
class EntrywiseAction(Action): | |
def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
super(EntrywiseAction, cls).add_arguments(parser) | |
parser.add_argument( | |
"dataset", metavar="<dataset>", help="Dataset name (e.g. densepose_coco_2014_train)" | |
) | |
parser.add_argument( | |
"selector", | |
metavar="<selector>", | |
help="Dataset entry selector in the form field1[:type]=value1[," | |
"field2[:type]=value_min-value_max...] which selects all " | |
"entries from the dataset that satisfy the constraints", | |
) | |
parser.add_argument( | |
"--max-entries", metavar="N", help="Maximum number of entries to process", type=int | |
) | |
def execute(cls: type, args: argparse.Namespace): | |
dataset = setup_dataset(args.dataset) | |
entry_selector = EntrySelector.from_string(args.selector) | |
context = cls.create_context(args) | |
if args.max_entries is not None: | |
for _, entry in zip(range(args.max_entries), dataset): | |
if entry_selector(entry): | |
cls.execute_on_entry(entry, context) | |
else: | |
for entry in dataset: | |
if entry_selector(entry): | |
cls.execute_on_entry(entry, context) | |
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: | |
context = {} | |
return context | |
class PrintAction(EntrywiseAction): | |
""" | |
Print action that outputs selected entries to stdout | |
""" | |
COMMAND: ClassVar[str] = "print" | |
def add_parser(cls: type, subparsers: argparse._SubParsersAction): | |
parser = subparsers.add_parser(cls.COMMAND, help="Output selected entries to stdout. ") | |
cls.add_arguments(parser) | |
parser.set_defaults(func=cls.execute) | |
def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
super(PrintAction, cls).add_arguments(parser) | |
def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): | |
import pprint | |
printer = pprint.PrettyPrinter(indent=2, width=200, compact=True) | |
printer.pprint(entry) | |
class ShowAction(EntrywiseAction): | |
""" | |
Show action that visualizes selected entries on an image | |
""" | |
COMMAND: ClassVar[str] = "show" | |
VISUALIZERS: ClassVar[Dict[str, object]] = { | |
"dp_segm": DensePoseDataCoarseSegmentationVisualizer(), | |
"dp_i": DensePoseDataPointsIVisualizer(), | |
"dp_u": DensePoseDataPointsUVisualizer(), | |
"dp_v": DensePoseDataPointsVVisualizer(), | |
"dp_pts": DensePoseDataPointsVisualizer(), | |
"bbox": BoundingBoxVisualizer(), | |
} | |
def add_parser(cls: type, subparsers: argparse._SubParsersAction): | |
parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries") | |
cls.add_arguments(parser) | |
parser.set_defaults(func=cls.execute) | |
def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
super(ShowAction, cls).add_arguments(parser) | |
parser.add_argument( | |
"visualizations", | |
metavar="<visualizations>", | |
help="Comma separated list of visualizations, possible values: " | |
"[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))), | |
) | |
parser.add_argument( | |
"--output", | |
metavar="<image_file>", | |
default="output.png", | |
help="File name to save output to", | |
) | |
def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): | |
import cv2 | |
import numpy as np | |
image_fpath = PathManager.get_local_path(entry["file_name"]) | |
image = cv2.imread(image_fpath, cv2.IMREAD_GRAYSCALE) | |
image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) | |
datas = cls._extract_data_for_visualizers_from_entry(context["vis_specs"], entry) | |
visualizer = context["visualizer"] | |
image_vis = visualizer.visualize(image, datas) | |
entry_idx = context["entry_idx"] + 1 | |
out_fname = cls._get_out_fname(entry_idx, context["out_fname"]) | |
cv2.imwrite(out_fname, image_vis) | |
logger.info(f"Output saved to {out_fname}") | |
context["entry_idx"] += 1 | |
def _get_out_fname(cls: type, entry_idx: int, fname_base: str): | |
base, ext = os.path.splitext(fname_base) | |
return base + ".{0:04d}".format(entry_idx) + ext | |
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: | |
vis_specs = args.visualizations.split(",") | |
visualizers = [] | |
for vis_spec in vis_specs: | |
vis = cls.VISUALIZERS[vis_spec] | |
visualizers.append(vis) | |
context = { | |
"vis_specs": vis_specs, | |
"visualizer": CompoundVisualizer(visualizers), | |
"out_fname": args.output, | |
"entry_idx": 0, | |
} | |
return context | |
def _extract_data_for_visualizers_from_entry( | |
cls: type, vis_specs: List[str], entry: Dict[str, Any] | |
): | |
dp_list = [] | |
bbox_list = [] | |
for annotation in entry["annotations"]: | |
is_valid, _ = DensePoseDataRelative.validate_annotation(annotation) | |
if not is_valid: | |
continue | |
bbox = torch.as_tensor(annotation["bbox"]) | |
bbox_list.append(bbox) | |
dp_data = DensePoseDataRelative(annotation) | |
dp_list.append(dp_data) | |
datas = [] | |
for vis_spec in vis_specs: | |
datas.append(bbox_list if "bbox" == vis_spec else (bbox_list, dp_list)) | |
return datas | |
def setup_dataset(dataset_name): | |
logger.info("Loading dataset {}".format(dataset_name)) | |
start = timer() | |
dataset = DatasetCatalog.get(dataset_name) | |
stop = timer() | |
logger.info("Loaded dataset {} in {:.3f}s".format(dataset_name, stop - start)) | |
return dataset | |
def create_argument_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser( | |
description=DOC, | |
formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120), | |
) | |
parser.set_defaults(func=lambda _: parser.print_help(sys.stdout)) | |
subparsers = parser.add_subparsers(title="Actions") | |
for _, action in _ACTION_REGISTRY.items(): | |
action.add_parser(subparsers) | |
return parser | |
def main(): | |
parser = create_argument_parser() | |
args = parser.parse_args() | |
verbosity = args.verbosity if hasattr(args, "verbosity") else None | |
global logger | |
logger = setup_logger(name=LOGGER_NAME) | |
logger.setLevel(verbosity_to_level(verbosity)) | |
args.func(args) | |
if __name__ == "__main__": | |
main() | |