Spaces:
Running
Running
/* Inference for Llama-2 Transformer model in pure C, int8 quantized forward pass. */ | |
// ---------------------------------------------------------------------------- | |
// Globals | |
int GS = 0; // group size global for quantization of the weights | |
// ---------------------------------------------------------------------------- | |
// Transformer model | |
typedef struct { | |
int dim; // transformer dimension | |
int hidden_dim; // for ffn layers | |
int n_layers; // number of layers | |
int n_heads; // number of query heads | |
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) | |
int vocab_size; // vocabulary size, usually 256 (byte-level) | |
int seq_len; // max sequence length | |
} Config; | |
typedef struct { | |
int8_t* q; // quantized values | |
float* s; // scaling factors | |
} QuantizedTensor; | |
typedef struct { | |
// token embedding table | |
QuantizedTensor *q_tokens; // (vocab_size, dim) | |
float* token_embedding_table; // same, but dequantized | |
// weights for rmsnorms | |
float* rms_att_weight; // (layer, dim) rmsnorm weights | |
float* rms_ffn_weight; // (layer, dim) | |
// weights for matmuls. note dim == n_heads * head_size | |
QuantizedTensor *wq; // (layer, dim, n_heads * head_size) | |
QuantizedTensor *wk; // (layer, dim, n_kv_heads * head_size) | |
QuantizedTensor *wv; // (layer, dim, n_kv_heads * head_size) | |
QuantizedTensor *wo; // (layer, n_heads * head_size, dim) | |
// weights for ffn | |
QuantizedTensor *w1; // (layer, hidden_dim, dim) | |
QuantizedTensor *w2; // (layer, dim, hidden_dim) | |
QuantizedTensor *w3; // (layer, hidden_dim, dim) | |
// final rmsnorm | |
float* rms_final_weight; // (dim,) | |
// (optional) classifier weights for the logits, on the last layer | |
QuantizedTensor *wcls; | |
} TransformerWeights; | |
typedef struct { | |
// current wave of activations | |
float *x; // activation at current time stamp (dim,) | |
float *xb; // same, but inside a residual branch (dim,) | |
float *xb2; // an additional buffer just for convenience (dim,) | |
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,) | |
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,) | |
QuantizedTensor xq; // quantized x (dim,) | |
QuantizedTensor hq; // quantized hb (hidden_dim,) | |
float *q; // query (dim,) | |
float *k; // key (dim,) | |
float *v; // value (dim,) | |
float *att; // buffer for scores/attention values (n_heads, seq_len) | |
float *logits; // output logits | |
// kv cache | |
float* key_cache; // (layer, seq_len, dim) | |
float* value_cache; // (layer, seq_len, dim) | |
} RunState; | |
typedef struct { | |
Config config; // the hyperparameters of the architecture (the blueprint) | |
TransformerWeights weights; // the weights of the model | |
RunState state; // buffers for the "wave" of activations in the forward pass | |
// some more state needed to properly clean up the memory mapping (sigh) | |
int fd; // file descriptor for memory mapping | |
float* data; // memory mapped data pointer | |
ssize_t file_size; // size of the checkpoint file in bytes | |
} Transformer; | |
void malloc_run_state(RunState* s, Config* p) { | |
// we calloc instead of malloc to keep valgrind happy | |
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; | |
s->x = calloc(p->dim, sizeof(float)); | |
s->xb = calloc(p->dim, sizeof(float)); | |
s->xb2 = calloc(p->dim, sizeof(float)); | |
s->hb = calloc(p->hidden_dim, sizeof(float)); | |
s->hb2 = calloc(p->hidden_dim, sizeof(float)); | |
s->xq = (QuantizedTensor) { .q = calloc(p->dim, sizeof(int8_t)), .s = calloc(p->dim, sizeof(float)) }; | |
s->hq = (QuantizedTensor) { .q = calloc(p->hidden_dim, sizeof(int8_t)), .s = calloc(p->hidden_dim, sizeof(float)) }; | |
s->q = calloc(p->dim, sizeof(float)); | |
s->k = calloc(kv_dim, sizeof(float)); | |
s->v = calloc(kv_dim, sizeof(float)); | |
s->att = calloc(p->n_heads * p->seq_len, sizeof(float)); | |
s->logits = calloc(p->vocab_size, sizeof(float)); | |
s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float)); | |
s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float)); | |
// ensure all mallocs went fine | |
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q | |
|| !s->k || !s->v || !s->att || !s->logits || !s->key_cache | |
|| !s->value_cache) { | |
fprintf(stderr, "malloc failed!\n"); | |
exit(EXIT_FAILURE); | |
} | |
} | |
void free_run_state(RunState* s) { | |
free(s->x); | |
free(s->xb); | |
free(s->xb2); | |
free(s->hb); | |
free(s->hb2); | |
free(s->xq.q); | |
free(s->xq.s); | |
free(s->hq.q); | |
free(s->hq.s); | |
free(s->q); | |
free(s->k); | |
free(s->v); | |
free(s->att); | |
free(s->logits); | |
free(s->key_cache); | |
free(s->value_cache); | |
} | |
// ---------------------------------------------------------------------------- | |
// Quantization functions | |
void dequantize(QuantizedTensor *qx, float* x, int n) { | |
for (int i = 0; i < n; i++) { | |
x[i] = qx->q[i] * qx->s[i / GS]; | |
} | |
} | |
void quantize(QuantizedTensor *qx, float* x, int n) { | |
int num_groups = n / GS; | |
float Q_MAX = 127.0f; | |
for (int group = 0; group < num_groups; group++) { | |
// find the max absolute value in the current group | |
float wmax = 0.0; | |
for (int i = 0; i < GS; i++) { | |
float val = fabs(x[group * GS + i]); | |
if (val > wmax) { | |
wmax = val; | |
} | |
} | |
// calculate and write the scaling factor | |
float scale = wmax / Q_MAX; | |
qx->s[group] = scale; | |
// calculate and write the quantized values | |
for (int i = 0; i < GS; i++) { | |
float quant_value = x[group * GS + i] / scale; // scale | |
int8_t quantized = (int8_t) round(quant_value); // round and clamp | |
qx->q[group * GS + i] = quantized; | |
} | |
} | |
} | |
/* initialize `n` x quantized tensor (with `size_each` elements), starting from memory pointed at *ptr */ | |
QuantizedTensor *init_quantized_tensors(void **ptr, int n, int size_each) { | |
void *p = *ptr; | |
QuantizedTensor *res = malloc(n * sizeof(QuantizedTensor)); | |
for(int i=0; i<n; i++) { | |
/* map quantized int8 values*/ | |
res[i].q = (int8_t*)p; | |
p = (int8_t*)p + size_each; | |
/* map scale factors */ | |
res[i].s = (float*)p; | |
p = (float*)p + size_each / GS; | |
} | |
*ptr = p; // advance ptr to current position | |
return res; | |
} | |
void memory_map_weights(TransformerWeights *w, Config* p, void* ptr, uint8_t shared_classifier) { | |
int head_size = p->dim / p->n_heads; | |
// first are the parameters that are kept in fp32 (the rmsnorm (1D) weights) | |
float* fptr = (float*) ptr; // cast our pointer to float* | |
w->rms_att_weight = fptr; | |
fptr += p->n_layers * p->dim; | |
w->rms_ffn_weight = fptr; | |
fptr += p->n_layers * p->dim; | |
w->rms_final_weight = fptr; | |
fptr += p->dim; | |
// now read all the quantized weights | |
ptr = (void*)fptr; // now cast the pointer back to void* | |
w->q_tokens = init_quantized_tensors(&ptr, 1, p->vocab_size * p->dim); | |
// dequantize token embedding table | |
w->token_embedding_table = malloc(p->vocab_size * p->dim * sizeof(float)); | |
dequantize(w->q_tokens, w->token_embedding_table, p->vocab_size * p->dim); | |
w->wq = init_quantized_tensors(&ptr, p->n_layers, p->dim * (p->n_heads * head_size)); | |
w->wk = init_quantized_tensors(&ptr, p->n_layers, p->dim * (p->n_kv_heads * head_size)); | |
w->wv = init_quantized_tensors(&ptr, p->n_layers, p->dim * (p->n_kv_heads * head_size)); | |
w->wo = init_quantized_tensors(&ptr, p->n_layers, (p->n_heads * head_size) * p->dim); | |
w->w1 = init_quantized_tensors(&ptr, p->n_layers, p->dim * p->hidden_dim); | |
w->w2 = init_quantized_tensors(&ptr, p->n_layers, p->hidden_dim * p->dim); | |
w->w3 = init_quantized_tensors(&ptr, p->n_layers, p->dim * p->hidden_dim); | |
w->wcls = shared_classifier ? w->q_tokens : init_quantized_tensors(&ptr, 1, p->dim * p->vocab_size); | |
} | |
void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights, | |
int* fd, float** data, ssize_t* file_size) { | |
FILE *file = fopen(checkpoint, "rb"); | |
if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); } | |
// read in magic number (uint32), has to be 0x616b3432, i.e. "ak42" in ASCII | |
uint32_t magic_number; | |
if (fread(&magic_number, sizeof(uint32_t), 1, file) != 1) { exit(EXIT_FAILURE); } | |
if (magic_number != 0x616b3432) { fprintf(stderr, "Bad magic number\n"); exit(EXIT_FAILURE); } | |
// read in the version number (uint32), has to be 1 | |
int version; | |
if (fread(&version, sizeof(int), 1, file) != 1) { exit(EXIT_FAILURE); } | |
if (version != 2) { fprintf(stderr, "Bad version %d, need version 2\n", version); exit(EXIT_FAILURE); } | |
int header_size = 256; // the header size for version 2 in bytes | |
// read in the Config | |
if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); } | |
// read in flags | |
uint8_t shared_classifier; // a byte to indicate if the classifier is shared | |
if (fread(&shared_classifier, sizeof(uint8_t), 1, file) != 1) { exit(EXIT_FAILURE); } | |
int group_size; // the group size used in quantization | |
if (fread(&group_size, sizeof(int), 1, file) != 1) { exit(EXIT_FAILURE); } | |
GS = group_size; // set as global, as it will be used in many places | |
// figure out the file size | |
fseek(file, 0, SEEK_END); // move file pointer to end of file | |
*file_size = ftell(file); // get the file size, in bytes | |
fclose(file); | |
// memory map the Transformer weights into the data pointer | |
*fd = open(checkpoint, O_RDONLY); // open in read only mode | |
if (*fd == -1) { fprintf(stderr, "open failed!\n"); exit(EXIT_FAILURE); } | |
*data = mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0); | |
if (*data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); exit(EXIT_FAILURE); } | |
void* weights_ptr = ((char*)*data) + header_size; // skip header bytes. char is 1 byte | |
memory_map_weights(weights, config, weights_ptr, shared_classifier); | |
} | |
void build_transformer(Transformer *t, char* checkpoint_path) { | |
// read in the Config and the Weights from the checkpoint | |
read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size); | |
// allocate the RunState buffers | |
malloc_run_state(&t->state, &t->config); | |
} | |
void free_transformer(Transformer* t) { | |
// free QuantizedTensors | |
free(t->weights.q_tokens); | |
free(t->weights.token_embedding_table); | |
free(t->weights.wq); | |
free(t->weights.wk); | |
free(t->weights.wv); | |
free(t->weights.wo); | |
free(t->weights.w1); | |
free(t->weights.w2); | |
free(t->weights.w3); | |
if(t->weights.wcls != t->weights.q_tokens) { free(t->weights.wcls); } | |
// close the memory mapping | |
if (t->data != MAP_FAILED) { munmap(t->data, t->file_size); } | |
if (t->fd != -1) { close(t->fd); } | |
// free the RunState buffers | |
free_run_state(&t->state); | |
} | |
// ---------------------------------------------------------------------------- | |
// neural net blocks; the dynamics of the Transformer | |
void rmsnorm(float* o, float* x, float* weight, int size) { | |
// calculate sum of squares | |
float ss = 0.0f; | |
for (int j = 0; j < size; j++) { | |
ss += x[j] * x[j]; | |
} | |
ss /= size; | |
ss += 1e-5f; | |
ss = 1.0f / sqrtf(ss); | |
// normalize and scale | |
for (int j = 0; j < size; j++) { | |
o[j] = weight[j] * (ss * x[j]); | |
} | |
} | |
void softmax(float* x, int size) { | |
// find max value (for numerical stability) | |
float max_val = x[0]; | |
for (int i = 1; i < size; i++) { | |
if (x[i] > max_val) { | |
max_val = x[i]; | |
} | |
} | |
// exp and sum | |
float sum = 0.0f; | |
for (int i = 0; i < size; i++) { | |
x[i] = expf(x[i] - max_val); | |
sum += x[i]; | |
} | |
// normalize | |
for (int i = 0; i < size; i++) { | |
x[i] /= sum; | |
} | |
} | |
void matmul(float* xout, QuantizedTensor *x, QuantizedTensor *w, int n, int d) { | |
// W (d,n) @ x (n,) -> xout (d,) | |
// by far the most amount of time is spent inside this little function | |
// inputs to this function are both quantized | |
int i; | |
for (i = 0; i < d; i++) { | |
float val = 0.0f; | |
int32_t ival = 0; | |
int in = i * n; | |
// do the matmul in groups of GS | |
int j; | |
for (j = 0; j <= n - GS; j += GS) { | |
for (int k = 0; k < GS; k++) { | |
ival += ((int32_t) x->q[j + k]) * ((int32_t) w->q[in + j + k]); | |
} | |
val += ((float) ival) * w->s[(in + j) / GS] * x->s[j / GS]; | |
ival = 0; | |
} | |
xout[i] = val; | |
} | |
} | |
float* forward(Transformer* transformer, int token, int pos) { | |
// a few convenience variables | |
Config* p = &transformer->config; | |
TransformerWeights* w = &transformer->weights; | |
RunState* s = &transformer->state; | |
float *x = s->x; | |
int dim = p->dim; | |
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; | |
int kv_mul = p->n_heads / p->n_kv_heads; // integer multiplier of the kv sharing in multiquery | |
int hidden_dim = p->hidden_dim; | |
int head_size = dim / p->n_heads; | |
// copy the token embedding into x | |
memcpy(x, w->token_embedding_table + token*dim, dim * sizeof(float)); | |
// forward all the layers | |
for(int l = 0; l < p->n_layers; l++) { | |
// attention rmsnorm | |
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim); | |
// qkv matmuls for this position | |
quantize(&s->xq, s->xb, dim); | |
matmul(s->q, &s->xq, w->wq + l, dim, dim); | |
matmul(s->k, &s->xq, w->wk + l, dim, kv_dim); | |
matmul(s->v, &s->xq, w->wv + l, dim, kv_dim); | |
// RoPE relative positional encoding: complex-valued rotate q and k in each head | |
for (int i = 0; i < dim; i+=2) { | |
int head_dim = i % head_size; | |
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size); | |
float val = pos * freq; | |
float fcr = cosf(val); | |
float fci = sinf(val); | |
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only | |
for (int v = 0; v < rotn; v++) { | |
float* vec = v == 0 ? s->q : s->k; // the vector to rotate (query or key) | |
float v0 = vec[i]; | |
float v1 = vec[i+1]; | |
vec[i] = v0 * fcr - v1 * fci; | |
vec[i+1] = v0 * fci + v1 * fcr; | |
} | |
} | |
// save key,value at this time step (pos) to our kv cache | |
int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience | |
float* key_cache_row = s->key_cache + loff + pos * kv_dim; | |
float* value_cache_row = s->value_cache + loff + pos * kv_dim; | |
memcpy(key_cache_row, s->k, kv_dim * sizeof(*key_cache_row)); | |
memcpy(value_cache_row, s->v, kv_dim * sizeof(*value_cache_row)); | |
// multihead attention. iterate over all heads | |
int h; | |
for (h = 0; h < p->n_heads; h++) { | |
// get the query vector for this head | |
float* q = s->q + h * head_size; | |
// attention scores for this head | |
float* att = s->att + h * p->seq_len; | |
// iterate over all timesteps, including the current one | |
for (int t = 0; t <= pos; t++) { | |
// get the key vector for this head and at this timestep | |
float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size; | |
// calculate the attention score as the dot product of q and k | |
float score = 0.0f; | |
for (int i = 0; i < head_size; i++) { | |
score += q[i] * k[i]; | |
} | |
score /= sqrtf(head_size); | |
// save the score to the attention buffer | |
att[t] = score; | |
} | |
// softmax the scores to get attention weights, from 0..pos inclusively | |
softmax(att, pos + 1); | |
// weighted sum of the values, store back into xb | |
float* xb = s->xb + h * head_size; | |
memset(xb, 0, head_size * sizeof(float)); | |
for (int t = 0; t <= pos; t++) { | |
// get the value vector for this head and at this timestep | |
float* v = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size; | |
// get the attention weight for this timestep | |
float a = att[t]; | |
// accumulate the weighted value into xb | |
for (int i = 0; i < head_size; i++) { | |
xb[i] += a * v[i]; | |
} | |
} | |
} | |
// final matmul to get the output of the attention | |
quantize(&s->xq, s->xb, dim); | |
matmul(s->xb2, &s->xq, w->wo + l, dim, dim); | |
// residual connection back into x | |
for (int i = 0; i < dim; i++) { | |
x[i] += s->xb2[i]; | |
} | |
// ffn rmsnorm | |
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim); | |
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
// first calculate self.w1(x) and self.w3(x) | |
quantize(&s->xq, s->xb, dim); | |
matmul(s->hb, &s->xq, w->w1 + l, dim, hidden_dim); | |
matmul(s->hb2, &s->xq, w->w3 + l, dim, hidden_dim); | |
// SwiGLU non-linearity | |
for (int i = 0; i < hidden_dim; i++) { | |
float val = s->hb[i]; | |
// silu(x)=x*σ(x), where σ(x) is the logistic sigmoid | |
val *= (1.0f / (1.0f + expf(-val))); | |
// elementwise multiply with w3(x) | |
val *= s->hb2[i]; | |
s->hb[i] = val; | |
} | |
// final matmul to get the output of the ffn | |
quantize(&s->hq, s->hb, hidden_dim); | |
matmul(s->xb, &s->hq, w->w2 + l, hidden_dim, dim); | |
// residual connection | |
for (int i = 0; i < dim; i++) { | |
x[i] += s->xb[i]; | |
} | |
} | |
// final rmsnorm | |
rmsnorm(x, x, w->rms_final_weight, dim); | |
// classifier into logits | |
quantize(&s->xq, x, dim); | |
matmul(s->logits, &s->xq, w->wcls, dim, p->vocab_size); | |
return s->logits; | |
} | |
// ---------------------------------------------------------------------------- | |
// The Byte Pair Encoding (BPE) Tokenizer that translates strings <-> tokens | |
typedef struct { | |
char *str; | |
int id; | |
} TokenIndex; | |
typedef struct { | |
char** vocab; | |
float* vocab_scores; | |
TokenIndex *sorted_vocab; | |
int vocab_size; | |
unsigned int max_token_length; | |
unsigned char byte_pieces[512]; // stores all single-byte strings | |
} Tokenizer; | |
int compare_tokens(const void *a, const void *b) { | |
return strcmp(((TokenIndex*)a)->str, ((TokenIndex*)b)->str); | |
} | |
void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) { | |
// i should have written the vocab_size into the tokenizer file... sigh | |
t->vocab_size = vocab_size; | |
// malloc space to hold the scores and the strings | |
t->vocab = (char**)malloc(vocab_size * sizeof(char*)); | |
t->vocab_scores = (float*)malloc(vocab_size * sizeof(float)); | |
t->sorted_vocab = NULL; // initialized lazily | |
for (int i = 0; i < 256; i++) { | |
t->byte_pieces[i * 2] = (unsigned char)i; | |
t->byte_pieces[i * 2 + 1] = '\0'; | |
} | |
// read in the file | |
FILE *file = fopen(tokenizer_path, "rb"); | |
if (!file) { fprintf(stderr, "couldn't load %s\n", tokenizer_path); exit(EXIT_FAILURE); } | |
if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } | |
int len; | |
for (int i = 0; i < vocab_size; i++) { | |
if (fread(t->vocab_scores + i, sizeof(float), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE);} | |
if (fread(&len, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } | |
t->vocab[i] = (char *)malloc(len + 1); | |
if (fread(t->vocab[i], len, 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } | |
t->vocab[i][len] = '\0'; // add the string terminating token | |
} | |
fclose(file); | |
} | |
void free_tokenizer(Tokenizer* t) { | |
for (int i = 0; i < t->vocab_size; i++) { free(t->vocab[i]); } | |
free(t->vocab); | |
free(t->vocab_scores); | |
free(t->sorted_vocab); | |
} | |
char* decode(Tokenizer* t, int prev_token, int token) { | |
char *piece = t->vocab[token]; | |
// following BOS (1) token, sentencepiece decoder strips any leading whitespace (see PR #89) | |
if (prev_token == 1 && piece[0] == ' ') { piece++; } | |
// careful, some tokens designate raw bytes, and look like e.g. '<0x01>' | |
// parse this and convert and return the actual byte | |
unsigned char byte_val; | |
if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) { | |
piece = (char*)t->byte_pieces + byte_val * 2; | |
} | |
return piece; | |
} | |
void safe_printf(char *piece) { | |
// piece might be a raw byte token, and we only want to print printable chars or whitespace | |
// because some of the other bytes can be various control codes, backspace, etc. | |
if (piece == NULL) { return; } | |
if (piece[0] == '\0') { return; } | |
if (piece[1] == '\0') { | |
unsigned char byte_val = piece[0]; | |
if (!(isprint(byte_val) || isspace(byte_val))) { | |
return; // bad byte, don't print it | |
} | |
} | |
printf("%s", piece); | |
} | |
int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) { | |
// efficiently find the perfect match for str in vocab, return its index or -1 if not found | |
TokenIndex tok = { .str = str }; // acts as the key to search for | |
TokenIndex *res = bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex), compare_tokens); | |
return res != NULL ? res->id : -1; | |
} | |
void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) { | |
// encode the string text (input) into an upper-bound preallocated tokens[] array | |
// bos != 0 means prepend the BOS token (=1), eos != 0 means append the EOS token (=2) | |
if (text == NULL) { fprintf(stderr, "cannot encode NULL text\n"); exit(EXIT_FAILURE); } | |
if (t->sorted_vocab == NULL) { | |
// lazily malloc and sort the vocabulary | |
t->sorted_vocab = malloc(t->vocab_size * sizeof(TokenIndex)); | |
for (int i = 0; i < t->vocab_size; i++) { | |
t->sorted_vocab[i].str = t->vocab[i]; | |
t->sorted_vocab[i].id = i; | |
} | |
qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens); | |
} | |
// create a temporary buffer that will store merge candidates of always two consecutive tokens | |
// *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_length is 1) | |
char* str_buffer = malloc((t->max_token_length*2 +1 +2) * sizeof(char)); | |
size_t str_len = 0; | |
// start at 0 tokens | |
*n_tokens = 0; | |
// add optional BOS (=1) token, if desired | |
if (bos) tokens[(*n_tokens)++] = 1; | |
// add_dummy_prefix is true by default | |
// so prepend a dummy prefix token to the input string, but only if text != "" | |
// TODO: pretty sure this isn't correct in the general case but I don't have the | |
// energy to read more of the sentencepiece code to figure out what it's doing | |
if (text[0] != '\0') { | |
int dummy_prefix = str_lookup(" ", t->sorted_vocab, t->vocab_size); | |
tokens[(*n_tokens)++] = dummy_prefix; | |
} | |
// Okay UTF-8 time. This will get messy. Here is the reference from Wikipedia: | |
// Code point ↔ UTF-8 conversion | |
// First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4 | |
// U+0000 U+007F 0xxxxxxx | |
// U+0080 U+07FF 110xxxxx 10xxxxxx | |
// U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx | |
// U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | |
// process the raw (UTF-8) byte sequence of the input string | |
for (char *c = text; *c != '\0'; c++) { | |
// reset buffer if the current byte is ASCII or a leading byte | |
// 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the rest | |
// 0x80 is 10000000 | |
// in UTF-8, all continuation bytes start with "10" in first two bits | |
// so in English this is: "if this byte is not a continuation byte" | |
if ((*c & 0xC0) != 0x80) { | |
// this byte must be either a leading byte (11...) or an ASCII char (0x...) | |
// => reset our location, as we're starting a new UTF-8 codepoint | |
str_len = 0; | |
} | |
// append the current byte to the buffer | |
str_buffer[str_len++] = *c; // ++ is post-increment, incremented after this line | |
str_buffer[str_len] = '\0'; | |
// while the next character is a continuation byte, continue appending | |
// but if there are too many of them, just stop to avoid overruning str_buffer size. | |
if ((*(c+1) & 0xC0) == 0x80 && str_len < 4) { | |
continue; | |
} | |
// ok c+1 is not a continuation byte, so we've read in a full codepoint | |
int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); | |
if (id != -1) { | |
// we found this codepoint in vocab, add it as a token | |
tokens[(*n_tokens)++] = id; | |
} else { | |
// byte_fallback encoding: just encode each byte as a token | |
// +3 is here because the first 3 vocab elements are <unk>, <s>, </s> | |
// so the individual bytes only start at index 3 | |
for (int i=0; i < str_len; i++) { | |
tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3; | |
} | |
} | |
str_len = 0; // protect against a sequence of stray UTF8 continuation bytes | |
} | |
// merge the best consecutive pair each iteration, according the scores in vocab_scores | |
while (1) { | |
float best_score = -1e10; | |
int best_id = -1; | |
int best_idx = -1; | |
for (int i=0; i < (*n_tokens-1); i++) { | |
// check if we can merge the pair (tokens[i], tokens[i+1]) | |
sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]]); | |
int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); | |
if (id != -1 && t->vocab_scores[id] > best_score) { | |
// this merge pair exists in vocab! record its score and position | |
best_score = t->vocab_scores[id]; | |
best_id = id; | |
best_idx = i; | |
} | |
} | |
if (best_idx == -1) { | |
break; // we couldn't find any more pairs to merge, so we're done | |
} | |
// merge the consecutive pair (best_idx, best_idx+1) into new token best_id | |
tokens[best_idx] = best_id; | |
// delete token at position best_idx+1, shift the entire sequence back 1 | |
for (int i = best_idx+1; i < (*n_tokens-1); i++) { | |
tokens[i] = tokens[i+1]; | |
} | |
(*n_tokens)--; // token length decreased | |
} | |
// add optional EOS (=2) token, if desired | |
if (eos) tokens[(*n_tokens)++] = 2; | |
free(str_buffer); | |
} | |
// ---------------------------------------------------------------------------- | |
// The Sampler, which takes logits and returns a sampled token | |
// sampling can be done in a few ways: greedy argmax, sampling, top-p sampling | |
typedef struct { | |
float prob; | |
int index; | |
} ProbIndex; // struct used when sorting probabilities during top-p sampling | |
typedef struct { | |
int vocab_size; | |
ProbIndex* probindex; // buffer used in top-p sampling | |
float temperature; | |
float topp; | |
unsigned long long rng_state; | |
} Sampler; | |
int sample_argmax(float* probabilities, int n) { | |
// return the index that has the highest probability | |
int max_i = 0; | |
float max_p = probabilities[0]; | |
for (int i = 1; i < n; i++) { | |
if (probabilities[i] > max_p) { | |
max_i = i; | |
max_p = probabilities[i]; | |
} | |
} | |
return max_i; | |
} | |
int sample_mult(float* probabilities, int n, float coin) { | |
// sample index from probabilities (they must sum to 1!) | |
// coin is a random number in [0, 1), usually from random_f32() | |
float cdf = 0.0f; | |
for (int i = 0; i < n; i++) { | |
cdf += probabilities[i]; | |
if (coin < cdf) { | |
return i; | |
} | |
} | |
return n - 1; // in case of rounding errors | |
} | |
int compare(const void* a, const void* b) { | |
ProbIndex* a_ = (ProbIndex*) a; | |
ProbIndex* b_ = (ProbIndex*) b; | |
if (a_->prob > b_->prob) return -1; | |
if (a_->prob < b_->prob) return 1; | |
return 0; | |
} | |
int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex, float coin) { | |
// top-p sampling (or "nucleus sampling") samples from the smallest set of | |
// tokens that exceed probability topp. This way we never sample tokens that | |
// have very low probabilities and are less likely to go "off the rails". | |
// coin is a random number in [0, 1), usually from random_f32() | |
int n0 = 0; | |
// quicksort indices in descending order of probabilities | |
// values smaller than (1 - topp) / (n - 1) cannot be part of the result | |
// so for efficiency we crop these out as candidates before sorting | |
const float cutoff = (1.0f - topp) / (n - 1); | |
for (int i = 0; i < n; i++) { | |
if (probabilities[i] >= cutoff) { | |
probindex[n0].index = i; | |
probindex[n0].prob = probabilities[i]; | |
n0++; | |
} | |
} | |
qsort(probindex, n0, sizeof(ProbIndex), compare); | |
// truncate the list where cumulative probability exceeds topp | |
float cumulative_prob = 0.0f; | |
int last_idx = n0 - 1; // in case of rounding errors consider all elements | |
for (int i = 0; i < n0; i++) { | |
cumulative_prob += probindex[i].prob; | |
if (cumulative_prob > topp) { | |
last_idx = i; | |
break; // we've exceeded topp by including last_idx | |
} | |
} | |
// sample from the truncated list | |
float r = coin * cumulative_prob; | |
float cdf = 0.0f; | |
for (int i = 0; i <= last_idx; i++) { | |
cdf += probindex[i].prob; | |
if (r < cdf) { | |
return probindex[i].index; | |
} | |
} | |
return probindex[last_idx].index; // in case of rounding errors | |
} | |
void build_sampler(Sampler* sampler, int vocab_size, float temperature, float topp, unsigned long long rng_seed) { | |
sampler->vocab_size = vocab_size; | |
sampler->temperature = temperature; | |
sampler->topp = topp; | |
sampler->rng_state = rng_seed; | |
// buffer only used with nucleus sampling; may not need but it's ~small | |
sampler->probindex = malloc(sampler->vocab_size * sizeof(ProbIndex)); | |
} | |
void free_sampler(Sampler* sampler) { | |
free(sampler->probindex); | |
} | |
unsigned int random_u32(unsigned long long *state) { | |
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A | |
*state ^= *state >> 12; | |
*state ^= *state << 25; | |
*state ^= *state >> 27; | |
return (*state * 0x2545F4914F6CDD1Dull) >> 32; | |
} | |
float random_f32(unsigned long long *state) { // random float32 in [0,1) | |
return (random_u32(state) >> 8) / 16777216.0f; | |
} | |
int sample(Sampler* sampler, float* logits) { | |
// sample the token given the logits and some hyperparameters | |
int next; | |
if (sampler->temperature == 0.0f) { | |
// greedy argmax sampling: take the token with the highest probability | |
next = sample_argmax(logits, sampler->vocab_size); | |
} else { | |
// apply the temperature to the logits | |
for (int q=0; q<sampler->vocab_size; q++) { logits[q] /= sampler->temperature; } | |
// apply softmax to the logits to get the probabilities for next token | |
softmax(logits, sampler->vocab_size); | |
// flip a (float) coin (this is our source of entropy for sampling) | |
float coin = random_f32(&sampler->rng_state); | |
// we sample from this distribution to get the next token | |
if (sampler->topp <= 0 || sampler->topp >= 1) { | |
// simply sample from the predicted probability distribution | |
next = sample_mult(logits, sampler->vocab_size, coin); | |
} else { | |
// top-p (nucleus) sampling, clamping the least likely tokens to zero | |
next = sample_topp(logits, sampler->vocab_size, sampler->topp, sampler->probindex, coin); | |
} | |
} | |
return next; | |
} | |
// ---------------------------------------------------------------------------- | |
// utilities: time | |
long time_in_ms() { | |
// return time in milliseconds, for benchmarking the model speed | |
struct timespec time; | |
clock_gettime(CLOCK_REALTIME, &time); | |
return time.tv_sec * 1000 + time.tv_nsec / 1000000; | |
} | |
// ---------------------------------------------------------------------------- | |
// generation loop | |
void generate(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, char *prompt, int steps) { | |
char *empty_prompt = ""; | |
if (prompt == NULL) { prompt = empty_prompt; } | |
// encode the (string) prompt into tokens sequence | |
int num_prompt_tokens = 0; | |
int* prompt_tokens = (int*)malloc((strlen(prompt)+3) * sizeof(int)); // +3 for '\0', ?BOS, ?EOS | |
encode(tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens); | |
if (num_prompt_tokens < 1) { | |
fprintf(stderr, "something is wrong, expected at least 1 prompt token\n"); | |
exit(EXIT_FAILURE); | |
} | |
// start the main loop | |
long start = 0; // used to time our code, only initialized after first iteration | |
int next; // will store the next token in the sequence | |
int token = prompt_tokens[0]; // kick off with the first token in the prompt | |
int pos = 0; // position in the sequence | |
while (pos < steps) { | |
// forward the transformer to get logits for the next token | |
float* logits = forward(transformer, token, pos); | |
// advance the state state machine | |
if (pos < num_prompt_tokens - 1) { | |
// if we are still processing the input prompt, force the next prompt token | |
next = prompt_tokens[pos + 1]; | |
} else { | |
// otherwise sample the next token from the logits | |
next = sample(sampler, logits); | |
} | |
pos++; | |
// data-dependent terminating condition: the BOS (=1) token delimits sequences | |
if (next == 1) { break; } | |
// print the token as string, decode it with the Tokenizer object | |
char* piece = decode(tokenizer, token, next); | |
safe_printf(piece); // same as printf("%s", piece), but skips "unsafe" bytes | |
fflush(stdout); | |
token = next; | |
// init the timer here because the first iteration can be slower | |
if (start == 0) { start = time_in_ms(); } | |
} | |
printf("\n"); | |
// report achieved tok/s (pos-1 because the timer starts after first iteration) | |
if (pos > 1) { | |
long end = time_in_ms(); | |
fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000); | |
} | |
free(prompt_tokens); | |
} | |
void read_stdin(const char* guide, char* buffer, size_t bufsize) { | |
// read a line from stdin, up to but not including \n | |
printf("%s", guide); | |
if (fgets(buffer, bufsize, stdin) != NULL) { | |
size_t len = strlen(buffer); | |
if (len > 0 && buffer[len - 1] == '\n') { | |
buffer[len - 1] = '\0'; // strip newline | |
} | |
} | |
} | |
// ---------------------------------------------------------------------------- | |
// chat loop | |
// I manually inspected the tokens for a few chat conversations compared to | |
// python reference and that seemed ok, but this was not thoroughly tested and | |
// is not safely implemented, it's more a proof of concept atm. | |
void chat(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, | |
char *cli_user_prompt, char *cli_system_prompt, int steps) { | |
// buffers for reading the system prompt and user prompt from stdin | |
// you'll notice they are soomewhat haphazardly and unsafely set atm | |
char system_prompt[512]; | |
char user_prompt[512]; | |
char rendered_prompt[1152]; | |
int num_prompt_tokens = 0; | |
int* prompt_tokens = (int*)malloc(1152 * sizeof(int)); | |
int user_idx; | |
// start the main loop | |
int8_t user_turn = 1; // user starts | |
int next; // will store the next token in the sequence | |
int token; // stores the current token to feed into the transformer | |
int prev_token; | |
int pos = 0; // position in the sequence | |
while (pos < steps) { | |
// when it is the user's turn to contribute tokens to the dialog... | |
if (user_turn) { | |
// get the (optional) system prompt at position 0 | |
if (pos == 0) { | |
// at position 0, the user can also contribute a system prompt | |
if (cli_system_prompt == NULL) { | |
// system prompt was not passed in, attempt to get it from stdin | |
read_stdin("Enter system prompt (optional): ", system_prompt, sizeof(system_prompt)); | |
} else { | |
// system prompt was passed in, use it | |
strcpy(system_prompt, cli_system_prompt); | |
} | |
} | |
// get the user prompt | |
if (pos == 0 && cli_user_prompt != NULL) { | |
// user prompt for position 0 was passed in, use it | |
strcpy(user_prompt, cli_user_prompt); | |
} else { | |
// otherwise get user prompt from stdin | |
read_stdin("User: ", user_prompt, sizeof(user_prompt)); | |
} | |
// render user/system prompts into the Llama 2 Chat schema | |
if (pos == 0 && system_prompt[0] != '\0') { | |
char system_template[] = "[INST] <<SYS>>\n%s\n<</SYS>>\n\n%s [/INST]"; | |
sprintf(rendered_prompt, system_template, system_prompt, user_prompt); | |
} else { | |
char user_template[] = "[INST] %s [/INST]"; | |
sprintf(rendered_prompt, user_template, user_prompt); | |
} | |
// encode the rendered prompt into tokens | |
encode(tokenizer, rendered_prompt, 1, 0, prompt_tokens, &num_prompt_tokens); | |
user_idx = 0; // reset the user index | |
user_turn = 0; | |
printf("Assistant: "); | |
} | |
// determine the token to pass into the transformer next | |
if (user_idx < num_prompt_tokens) { | |
// if we are still processing the input prompt, force the next prompt token | |
token = prompt_tokens[user_idx++]; | |
} else { | |
// otherwise use the next token sampled from previous turn | |
token = next; | |
} | |
// EOS (=2) token ends the Assistant turn | |
if (token == 2) { user_turn = 1; } | |
// forward the transformer to get logits for the next token | |
float* logits = forward(transformer, token, pos); | |
next = sample(sampler, logits); | |
pos++; | |
if (user_idx >= num_prompt_tokens && next != 2) { | |
// the Assistant is responding, so print its output | |
char* piece = decode(tokenizer, token, next); | |
safe_printf(piece); // same as printf("%s", piece), but skips "unsafe" bytes | |
fflush(stdout); | |
} | |
if (next == 2) { printf("\n"); } | |
} | |
printf("\n"); | |
free(prompt_tokens); | |
} | |
// ---------------------------------------------------------------------------- | |
// CLI, include only if not testing | |
void error_usage() { | |
fprintf(stderr, "Usage: run <checkpoint> [options]\n"); | |
fprintf(stderr, "Example: run model.bin -n 256 -i \"Once upon a time\"\n"); | |
fprintf(stderr, "Options:\n"); | |
fprintf(stderr, " -t <float> temperature in [0,inf], default 1.0\n"); | |
fprintf(stderr, " -p <float> p value in top-p (nucleus) sampling in [0,1] default 0.9\n"); | |
fprintf(stderr, " -s <int> random seed, default time(NULL)\n"); | |
fprintf(stderr, " -n <int> number of steps to run for, default 256. 0 = max_seq_len\n"); | |
fprintf(stderr, " -i <string> input prompt\n"); | |
fprintf(stderr, " -z <string> optional path to custom tokenizer\n"); | |
fprintf(stderr, " -m <string> mode: generate|chat, default: generate\n"); | |
fprintf(stderr, " -y <string> (optional) system prompt in chat mode\n"); | |
exit(EXIT_FAILURE); | |
} | |
int main(int argc, char *argv[]) { | |
// default parameters | |
char *checkpoint_path = NULL; // e.g. out/model.bin | |
char *tokenizer_path = "tokenizer.bin"; | |
float temperature = 1.0f; // 0.0 = greedy deterministic. 1.0 = original. don't set higher | |
float topp = 0.9f; // top-p in nucleus sampling. 1.0 = off. 0.9 works well, but slower | |
int steps = 256; // number of steps to run for | |
char *prompt = NULL; // prompt string | |
unsigned long long rng_seed = 0; // seed rng with time by default | |
char *mode = "generate"; // generate|chat | |
char *system_prompt = NULL; // the (optional) system prompt to use in chat mode | |
// poor man's C argparse so we can override the defaults above from the command line | |
if (argc >= 2) { checkpoint_path = argv[1]; } else { error_usage(); } | |
for (int i = 2; i < argc; i+=2) { | |
// do some basic validation | |
if (i + 1 >= argc) { error_usage(); } // must have arg after flag | |
if (argv[i][0] != '-') { error_usage(); } // must start with dash | |
if (strlen(argv[i]) != 2) { error_usage(); } // must be -x (one dash, one letter) | |
// read in the args | |
if (argv[i][1] == 't') { temperature = atof(argv[i + 1]); } | |
else if (argv[i][1] == 'p') { topp = atof(argv[i + 1]); } | |
else if (argv[i][1] == 's') { rng_seed = atoi(argv[i + 1]); } | |
else if (argv[i][1] == 'n') { steps = atoi(argv[i + 1]); } | |
else if (argv[i][1] == 'i') { prompt = argv[i + 1]; } | |
else if (argv[i][1] == 'z') { tokenizer_path = argv[i + 1]; } | |
else if (argv[i][1] == 'm') { mode = argv[i + 1]; } | |
else if (argv[i][1] == 'y') { system_prompt = argv[i + 1]; } | |
else { error_usage(); } | |
} | |
// parameter validation/overrides | |
if (rng_seed <= 0) rng_seed = (unsigned int)time(NULL); | |
if (temperature < 0.0) temperature = 0.0; | |
if (topp < 0.0 || 1.0 < topp) topp = 0.9; | |
if (steps < 0) steps = 0; | |
// build the Transformer via the model .bin file | |
Transformer transformer; | |
build_transformer(&transformer, checkpoint_path); | |
if (steps == 0 || steps > transformer.config.seq_len) steps = transformer.config.seq_len; // ovrerride to ~max length | |
// build the Tokenizer via the tokenizer .bin file | |
Tokenizer tokenizer; | |
build_tokenizer(&tokenizer, tokenizer_path, transformer.config.vocab_size); | |
// build the Sampler | |
Sampler sampler; | |
build_sampler(&sampler, transformer.config.vocab_size, temperature, topp, rng_seed); | |
// run! | |
if (strcmp(mode, "generate") == 0) { | |
generate(&transformer, &tokenizer, &sampler, prompt, steps); | |
} else if (strcmp(mode, "chat") == 0) { | |
chat(&transformer, &tokenizer, &sampler, prompt, system_prompt, steps); | |
} else { | |
fprintf(stderr, "unknown mode: %s\n", mode); | |
error_usage(); | |
} | |
// memory and file handles cleanup | |
free_sampler(&sampler); | |
free_tokenizer(&tokenizer); | |
free_transformer(&transformer); | |
return 0; | |
} | |